| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ispth |  |-  ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) | 
						
							| 2 |  | trliswlk |  |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 3 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 4 | 3 | wlkp |  |-  ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) | 
						
							| 5 |  | elfz0lmr |  |-  ( J e. ( 0 ... ( # ` F ) ) -> ( J = 0 \/ J e. ( 1 ..^ ( # ` F ) ) \/ J = ( # ` F ) ) ) | 
						
							| 6 |  | elfzo1 |  |-  ( I e. ( 1 ..^ ( # ` F ) ) <-> ( I e. NN /\ ( # ` F ) e. NN /\ I < ( # ` F ) ) ) | 
						
							| 7 |  | nnnn0 |  |-  ( ( # ` F ) e. NN -> ( # ` F ) e. NN0 ) | 
						
							| 8 | 7 | 3ad2ant2 |  |-  ( ( I e. NN /\ ( # ` F ) e. NN /\ I < ( # ` F ) ) -> ( # ` F ) e. NN0 ) | 
						
							| 9 | 6 8 | sylbi |  |-  ( I e. ( 1 ..^ ( # ` F ) ) -> ( # ` F ) e. NN0 ) | 
						
							| 10 | 9 | adantl |  |-  ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. NN0 ) | 
						
							| 11 |  | fvinim0ffz |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) | 
						
							| 12 | 10 11 | sylan2 |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( J = 0 -> ( P ` J ) = ( P ` 0 ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( J = 0 -> ( ( P ` I ) = ( P ` J ) <-> ( P ` I ) = ( P ` 0 ) ) ) | 
						
							| 15 | 14 | ad2antrl |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) <-> ( P ` I ) = ( P ` 0 ) ) ) | 
						
							| 16 |  | ffun |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Fun P ) | 
						
							| 17 | 16 | adantr |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> Fun P ) | 
						
							| 18 |  | fdm |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) ) | 
						
							| 19 |  | fzo0ss1 |  |-  ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) | 
						
							| 20 |  | fzossfz |  |-  ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) | 
						
							| 21 | 19 20 | sstri |  |-  ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) | 
						
							| 22 | 21 | sseli |  |-  ( I e. ( 1 ..^ ( # ` F ) ) -> I e. ( 0 ... ( # ` F ) ) ) | 
						
							| 23 |  | eleq2 |  |-  ( dom P = ( 0 ... ( # ` F ) ) -> ( I e. dom P <-> I e. ( 0 ... ( # ` F ) ) ) ) | 
						
							| 24 | 22 23 | imbitrrid |  |-  ( dom P = ( 0 ... ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> I e. dom P ) ) | 
						
							| 25 | 18 24 | syl |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> I e. dom P ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> I e. dom P ) | 
						
							| 27 | 17 26 | jca |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( Fun P /\ I e. dom P ) ) | 
						
							| 28 | 27 | adantrl |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( Fun P /\ I e. dom P ) ) | 
						
							| 29 |  | simprr |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> I e. ( 1 ..^ ( # ` F ) ) ) | 
						
							| 30 |  | funfvima |  |-  ( ( Fun P /\ I e. dom P ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 31 | 28 29 30 | sylc |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) | 
						
							| 32 |  | eleq1 |  |-  ( ( P ` I ) = ( P ` 0 ) -> ( ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 33 | 31 32 | syl5ibcom |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` 0 ) -> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 34 | 15 33 | sylbid |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 35 |  | nnel |  |-  ( -. ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) | 
						
							| 36 | 34 35 | imbitrrdi |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> -. ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 37 | 36 | necon2ad |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 38 | 37 | adantrd |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 39 | 12 38 | sylbid |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 40 | 39 | ex |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( P ` I ) =/= ( P ` J ) ) ) ) | 
						
							| 41 | 40 | com23 |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) | 
						
							| 42 | 41 | a1d |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) | 
						
							| 43 | 42 | 3imp |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 44 | 43 | com12 |  |-  ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 45 | 44 | a1d |  |-  ( ( J = 0 /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) | 
						
							| 46 | 45 | ex |  |-  ( J = 0 -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) | 
						
							| 47 |  | fvres |  |-  ( I e. ( 1 ..^ ( # ` F ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( P ` I ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( P ` I ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( P ` I ) ) | 
						
							| 50 | 49 | eqcomd |  |-  ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) ) | 
						
							| 51 |  | fvres |  |-  ( J e. ( 1 ..^ ( # ` F ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) = ( P ` J ) ) | 
						
							| 52 | 51 | ad2antrl |  |-  ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) = ( P ` J ) ) | 
						
							| 53 | 52 | eqcomd |  |-  ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` J ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) ) | 
						
							| 54 | 50 53 | eqeq12d |  |-  ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) <-> ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) ) ) | 
						
							| 55 |  | fssres |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) --> ( Vtx ` G ) ) | 
						
							| 56 | 21 55 | mpan2 |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) --> ( Vtx ` G ) ) | 
						
							| 57 |  | df-f1 |  |-  ( ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) <-> ( ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 58 | 57 | biimpri |  |-  ( ( ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) ) | 
						
							| 59 | 56 58 | sylan |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) ) | 
						
							| 60 | 59 | 3adant3 |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) ) | 
						
							| 61 |  | simpr |  |-  ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) | 
						
							| 62 | 61 | ancomd |  |-  ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 1 ..^ ( # ` F ) ) ) ) | 
						
							| 63 |  | f1veqaeq |  |-  ( ( ( P |` ( 1 ..^ ( # ` F ) ) ) : ( 1 ..^ ( # ` F ) ) -1-1-> ( Vtx ` G ) /\ ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) -> I = J ) ) | 
						
							| 64 | 60 62 63 | syl2an2r |  |-  ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` I ) = ( ( P |` ( 1 ..^ ( # ` F ) ) ) ` J ) -> I = J ) ) | 
						
							| 65 | 54 64 | sylbid |  |-  ( ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> I = J ) ) | 
						
							| 66 | 65 | ancoms |  |-  ( ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) /\ ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) -> ( ( P ` I ) = ( P ` J ) -> I = J ) ) | 
						
							| 67 | 66 | necon3d |  |-  ( ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) /\ ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) -> ( I =/= J -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 68 | 67 | ex |  |-  ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( I =/= J -> ( P ` I ) =/= ( P ` J ) ) ) ) | 
						
							| 69 | 68 | com23 |  |-  ( ( J e. ( 1 ..^ ( # ` F ) ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) | 
						
							| 70 | 69 | ex |  |-  ( J e. ( 1 ..^ ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) | 
						
							| 71 | 9 | adantl |  |-  ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. NN0 ) | 
						
							| 72 | 71 11 | sylan2 |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) | 
						
							| 73 |  | fveq2 |  |-  ( J = ( # ` F ) -> ( P ` J ) = ( P ` ( # ` F ) ) ) | 
						
							| 74 | 73 | eqeq2d |  |-  ( J = ( # ` F ) -> ( ( P ` I ) = ( P ` J ) <-> ( P ` I ) = ( P ` ( # ` F ) ) ) ) | 
						
							| 75 | 74 | ad2antrl |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) <-> ( P ` I ) = ( P ` ( # ` F ) ) ) ) | 
						
							| 76 | 27 | adantrl |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( Fun P /\ I e. dom P ) ) | 
						
							| 77 |  | simprr |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> I e. ( 1 ..^ ( # ` F ) ) ) | 
						
							| 78 | 76 77 30 | sylc |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) | 
						
							| 79 |  | eleq1 |  |-  ( ( P ` I ) = ( P ` ( # ` F ) ) -> ( ( P ` I ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 80 | 78 79 | syl5ibcom |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` ( # ` F ) ) -> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 81 | 75 80 | sylbid |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 82 |  | nnel |  |-  ( -. ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) | 
						
							| 83 | 81 82 | imbitrrdi |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` I ) = ( P ` J ) -> -. ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) | 
						
							| 84 | 83 | necon2ad |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 85 | 84 | adantld |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 86 | 72 85 | sylbid |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 87 | 86 | ex |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( P ` I ) =/= ( P ` J ) ) ) ) | 
						
							| 88 | 87 | com23 |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) | 
						
							| 89 | 88 | a1d |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) | 
						
							| 90 | 89 | 3imp |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 91 | 90 | com12 |  |-  ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 92 | 91 | a1d |  |-  ( ( J = ( # ` F ) /\ I e. ( 1 ..^ ( # ` F ) ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) | 
						
							| 93 | 92 | ex |  |-  ( J = ( # ` F ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) | 
						
							| 94 | 46 70 93 | 3jaoi |  |-  ( ( J = 0 \/ J e. ( 1 ..^ ( # ` F ) ) \/ J = ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) | 
						
							| 95 | 5 94 | syl |  |-  ( J e. ( 0 ... ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) -> ( I =/= J -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) | 
						
							| 96 | 95 | 3imp21 |  |-  ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 97 | 96 | com12 |  |-  ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 98 | 97 | 3exp |  |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) | 
						
							| 99 | 2 4 98 | 3syl |  |-  ( F ( Trails ` G ) P -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) ) ) | 
						
							| 100 | 99 | 3imp |  |-  ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 101 | 1 100 | sylbi |  |-  ( F ( Paths ` G ) P -> ( ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) -> ( P ` I ) =/= ( P ` J ) ) ) | 
						
							| 102 | 101 | imp |  |-  ( ( F ( Paths ` G ) P /\ ( I e. ( 1 ..^ ( # ` F ) ) /\ J e. ( 0 ... ( # ` F ) ) /\ I =/= J ) ) -> ( P ` I ) =/= ( P ` J ) ) |