Step |
Hyp |
Ref |
Expression |
1 |
|
pthd.p |
|- ( ph -> P e. Word _V ) |
2 |
|
pthd.r |
|- R = ( ( # ` P ) - 1 ) |
3 |
|
pthd.s |
|- ( ph -> A. i e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ R ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) ) |
4 |
3
|
3ad2ant1 |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> A. i e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ R ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) ) |
5 |
|
ralcom |
|- ( A. i e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ R ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) <-> A. j e. ( 1 ..^ R ) A. i e. ( 0 ..^ ( # ` P ) ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) ) |
6 |
|
elfzo1 |
|- ( j e. ( 1 ..^ R ) <-> ( j e. NN /\ R e. NN /\ j < R ) ) |
7 |
|
nnne0 |
|- ( j e. NN -> j =/= 0 ) |
8 |
7
|
necomd |
|- ( j e. NN -> 0 =/= j ) |
9 |
8
|
3ad2ant1 |
|- ( ( j e. NN /\ R e. NN /\ j < R ) -> 0 =/= j ) |
10 |
6 9
|
sylbi |
|- ( j e. ( 1 ..^ R ) -> 0 =/= j ) |
11 |
10
|
adantl |
|- ( ( ( # ` P ) e. NN /\ j e. ( 1 ..^ R ) ) -> 0 =/= j ) |
12 |
|
neeq1 |
|- ( I = 0 -> ( I =/= j <-> 0 =/= j ) ) |
13 |
11 12
|
syl5ibr |
|- ( I = 0 -> ( ( ( # ` P ) e. NN /\ j e. ( 1 ..^ R ) ) -> I =/= j ) ) |
14 |
13
|
expd |
|- ( I = 0 -> ( ( # ` P ) e. NN -> ( j e. ( 1 ..^ R ) -> I =/= j ) ) ) |
15 |
|
nnre |
|- ( j e. NN -> j e. RR ) |
16 |
15
|
adantr |
|- ( ( j e. NN /\ R e. NN ) -> j e. RR ) |
17 |
|
nnre |
|- ( R e. NN -> R e. RR ) |
18 |
17
|
adantl |
|- ( ( j e. NN /\ R e. NN ) -> R e. RR ) |
19 |
16 18
|
ltlend |
|- ( ( j e. NN /\ R e. NN ) -> ( j < R <-> ( j <_ R /\ R =/= j ) ) ) |
20 |
|
simpr |
|- ( ( j <_ R /\ R =/= j ) -> R =/= j ) |
21 |
19 20
|
syl6bi |
|- ( ( j e. NN /\ R e. NN ) -> ( j < R -> R =/= j ) ) |
22 |
21
|
3impia |
|- ( ( j e. NN /\ R e. NN /\ j < R ) -> R =/= j ) |
23 |
6 22
|
sylbi |
|- ( j e. ( 1 ..^ R ) -> R =/= j ) |
24 |
23
|
adantl |
|- ( ( ( # ` P ) e. NN /\ j e. ( 1 ..^ R ) ) -> R =/= j ) |
25 |
|
neeq1 |
|- ( I = R -> ( I =/= j <-> R =/= j ) ) |
26 |
24 25
|
syl5ibr |
|- ( I = R -> ( ( ( # ` P ) e. NN /\ j e. ( 1 ..^ R ) ) -> I =/= j ) ) |
27 |
26
|
expd |
|- ( I = R -> ( ( # ` P ) e. NN -> ( j e. ( 1 ..^ R ) -> I =/= j ) ) ) |
28 |
14 27
|
jaoi |
|- ( ( I = 0 \/ I = R ) -> ( ( # ` P ) e. NN -> ( j e. ( 1 ..^ R ) -> I =/= j ) ) ) |
29 |
28
|
impcom |
|- ( ( ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> ( j e. ( 1 ..^ R ) -> I =/= j ) ) |
30 |
29
|
3adant1 |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> ( j e. ( 1 ..^ R ) -> I =/= j ) ) |
31 |
30
|
imp |
|- ( ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) /\ j e. ( 1 ..^ R ) ) -> I =/= j ) |
32 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` P ) ) <-> ( # ` P ) e. NN ) |
33 |
32
|
biimpri |
|- ( ( # ` P ) e. NN -> 0 e. ( 0 ..^ ( # ` P ) ) ) |
34 |
|
eleq1 |
|- ( I = 0 -> ( I e. ( 0 ..^ ( # ` P ) ) <-> 0 e. ( 0 ..^ ( # ` P ) ) ) ) |
35 |
33 34
|
syl5ibr |
|- ( I = 0 -> ( ( # ` P ) e. NN -> I e. ( 0 ..^ ( # ` P ) ) ) ) |
36 |
|
fzo0end |
|- ( ( # ` P ) e. NN -> ( ( # ` P ) - 1 ) e. ( 0 ..^ ( # ` P ) ) ) |
37 |
2 36
|
eqeltrid |
|- ( ( # ` P ) e. NN -> R e. ( 0 ..^ ( # ` P ) ) ) |
38 |
|
eleq1 |
|- ( I = R -> ( I e. ( 0 ..^ ( # ` P ) ) <-> R e. ( 0 ..^ ( # ` P ) ) ) ) |
39 |
37 38
|
syl5ibr |
|- ( I = R -> ( ( # ` P ) e. NN -> I e. ( 0 ..^ ( # ` P ) ) ) ) |
40 |
35 39
|
jaoi |
|- ( ( I = 0 \/ I = R ) -> ( ( # ` P ) e. NN -> I e. ( 0 ..^ ( # ` P ) ) ) ) |
41 |
40
|
impcom |
|- ( ( ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> I e. ( 0 ..^ ( # ` P ) ) ) |
42 |
41
|
3adant1 |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> I e. ( 0 ..^ ( # ` P ) ) ) |
43 |
42
|
adantr |
|- ( ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) /\ j e. ( 1 ..^ R ) ) -> I e. ( 0 ..^ ( # ` P ) ) ) |
44 |
|
neeq1 |
|- ( i = I -> ( i =/= j <-> I =/= j ) ) |
45 |
|
fveq2 |
|- ( i = I -> ( P ` i ) = ( P ` I ) ) |
46 |
45
|
neeq1d |
|- ( i = I -> ( ( P ` i ) =/= ( P ` j ) <-> ( P ` I ) =/= ( P ` j ) ) ) |
47 |
44 46
|
imbi12d |
|- ( i = I -> ( ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) <-> ( I =/= j -> ( P ` I ) =/= ( P ` j ) ) ) ) |
48 |
47
|
rspcv |
|- ( I e. ( 0 ..^ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( # ` P ) ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) -> ( I =/= j -> ( P ` I ) =/= ( P ` j ) ) ) ) |
49 |
43 48
|
syl |
|- ( ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) /\ j e. ( 1 ..^ R ) ) -> ( A. i e. ( 0 ..^ ( # ` P ) ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) -> ( I =/= j -> ( P ` I ) =/= ( P ` j ) ) ) ) |
50 |
31 49
|
mpid |
|- ( ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) /\ j e. ( 1 ..^ R ) ) -> ( A. i e. ( 0 ..^ ( # ` P ) ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) -> ( P ` I ) =/= ( P ` j ) ) ) |
51 |
|
nesym |
|- ( ( P ` I ) =/= ( P ` j ) <-> -. ( P ` j ) = ( P ` I ) ) |
52 |
50 51
|
syl6ib |
|- ( ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) /\ j e. ( 1 ..^ R ) ) -> ( A. i e. ( 0 ..^ ( # ` P ) ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) -> -. ( P ` j ) = ( P ` I ) ) ) |
53 |
52
|
ralimdva |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> ( A. j e. ( 1 ..^ R ) A. i e. ( 0 ..^ ( # ` P ) ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) -> A. j e. ( 1 ..^ R ) -. ( P ` j ) = ( P ` I ) ) ) |
54 |
5 53
|
syl5bi |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> ( A. i e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ R ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) -> A. j e. ( 1 ..^ R ) -. ( P ` j ) = ( P ` I ) ) ) |
55 |
4 54
|
mpd |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> A. j e. ( 1 ..^ R ) -. ( P ` j ) = ( P ` I ) ) |
56 |
|
ralnex |
|- ( A. j e. ( 1 ..^ R ) -. ( P ` j ) = ( P ` I ) <-> -. E. j e. ( 1 ..^ R ) ( P ` j ) = ( P ` I ) ) |
57 |
55 56
|
sylib |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> -. E. j e. ( 1 ..^ R ) ( P ` j ) = ( P ` I ) ) |
58 |
|
wrdf |
|- ( P e. Word _V -> P : ( 0 ..^ ( # ` P ) ) --> _V ) |
59 |
|
ffun |
|- ( P : ( 0 ..^ ( # ` P ) ) --> _V -> Fun P ) |
60 |
1 58 59
|
3syl |
|- ( ph -> Fun P ) |
61 |
60
|
3ad2ant1 |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> Fun P ) |
62 |
|
fvelima |
|- ( ( Fun P /\ ( P ` I ) e. ( P " ( 1 ..^ R ) ) ) -> E. j e. ( 1 ..^ R ) ( P ` j ) = ( P ` I ) ) |
63 |
62
|
ex |
|- ( Fun P -> ( ( P ` I ) e. ( P " ( 1 ..^ R ) ) -> E. j e. ( 1 ..^ R ) ( P ` j ) = ( P ` I ) ) ) |
64 |
61 63
|
syl |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> ( ( P ` I ) e. ( P " ( 1 ..^ R ) ) -> E. j e. ( 1 ..^ R ) ( P ` j ) = ( P ` I ) ) ) |
65 |
57 64
|
mtod |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> -. ( P ` I ) e. ( P " ( 1 ..^ R ) ) ) |
66 |
|
df-nel |
|- ( ( P ` I ) e/ ( P " ( 1 ..^ R ) ) <-> -. ( P ` I ) e. ( P " ( 1 ..^ R ) ) ) |
67 |
65 66
|
sylibr |
|- ( ( ph /\ ( # ` P ) e. NN /\ ( I = 0 \/ I = R ) ) -> ( P ` I ) e/ ( P " ( 1 ..^ R ) ) ) |