Step |
Hyp |
Ref |
Expression |
1 |
|
pthistrl |
|- ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) |
2 |
|
trlontrl |
|- ( F ( Trails ` G ) P -> F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P ) |
3 |
1 2
|
syl |
|- ( F ( Paths ` G ) P -> F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P ) |
4 |
|
id |
|- ( F ( Paths ` G ) P -> F ( Paths ` G ) P ) |
5 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
6 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
7 |
6
|
wlkepvtx |
|- ( F ( Walks ` G ) P -> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) ) |
8 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
9 |
|
3simpc |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F e. _V /\ P e. _V ) ) |
10 |
8 9
|
syl |
|- ( F ( Walks ` G ) P -> ( F e. _V /\ P e. _V ) ) |
11 |
7 10
|
jca |
|- ( F ( Walks ` G ) P -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
12 |
6
|
ispthson |
|- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P <-> ( F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P /\ F ( Paths ` G ) P ) ) ) |
13 |
5 11 12
|
3syl |
|- ( F ( Paths ` G ) P -> ( F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P <-> ( F ( ( P ` 0 ) ( TrailsOn ` G ) ( P ` ( # ` F ) ) ) P /\ F ( Paths ` G ) P ) ) ) |
14 |
3 4 13
|
mpbir2and |
|- ( F ( Paths ` G ) P -> F ( ( P ` 0 ) ( PathsOn ` G ) ( P ` ( # ` F ) ) ) P ) |