Description: Properties of a path between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 16-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pthsonfval.v | |- V = ( Vtx ` G ) |
|
Assertion | pthsonprop | |- ( F ( A ( PathsOn ` G ) B ) P -> ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthsonfval.v | |- V = ( Vtx ` G ) |
|
2 | 1 | ispthson | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( PathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |
3 | 2 | 3adantl1 | |- ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( PathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |
4 | df-pthson | |- PathsOn = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( TrailsOn ` g ) b ) p /\ f ( Paths ` g ) p ) } ) ) |
|
5 | 1 3 4 | wksonproplem | |- ( F ( A ( PathsOn ` G ) B ) P -> ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |