Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
|- ( ( C e. CC /\ D e. CC ) -> ( C + D ) e. CC ) |
2 |
1
|
3ad2ant2 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( C + D ) e. CC ) |
3 |
2
|
coscld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( C + D ) ) e. CC ) |
4 |
3
|
negnegd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> -u -u ( cos ` ( C + D ) ) = ( cos ` ( C + D ) ) ) |
5 |
|
addid2 |
|- ( ( C + D ) e. CC -> ( 0 + ( C + D ) ) = ( C + D ) ) |
6 |
5
|
oveq1d |
|- ( ( C + D ) e. CC -> ( ( 0 + ( C + D ) ) - ( ( A + B ) + ( C + D ) ) ) = ( ( C + D ) - ( ( A + B ) + ( C + D ) ) ) ) |
7 |
2 6
|
syl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( 0 + ( C + D ) ) - ( ( A + B ) + ( C + D ) ) ) = ( ( C + D ) - ( ( A + B ) + ( C + D ) ) ) ) |
8 |
|
0cnd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> 0 e. CC ) |
9 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
10 |
9
|
adantr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A + B ) e. CC ) |
11 |
10
|
3adant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( A + B ) e. CC ) |
12 |
8 11 2
|
pnpcan2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( 0 + ( C + D ) ) - ( ( A + B ) + ( C + D ) ) ) = ( 0 - ( A + B ) ) ) |
13 |
|
simp3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) + ( C + D ) ) = _pi ) |
14 |
13
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( C + D ) - ( ( A + B ) + ( C + D ) ) ) = ( ( C + D ) - _pi ) ) |
15 |
7 12 14
|
3eqtr3rd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( C + D ) - _pi ) = ( 0 - ( A + B ) ) ) |
16 |
|
df-neg |
|- -u ( A + B ) = ( 0 - ( A + B ) ) |
17 |
15 16
|
eqtr4di |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( C + D ) - _pi ) = -u ( A + B ) ) |
18 |
17
|
fveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( C + D ) - _pi ) ) = ( cos ` -u ( A + B ) ) ) |
19 |
|
cosmpi |
|- ( ( C + D ) e. CC -> ( cos ` ( ( C + D ) - _pi ) ) = -u ( cos ` ( C + D ) ) ) |
20 |
2 19
|
syl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( C + D ) - _pi ) ) = -u ( cos ` ( C + D ) ) ) |
21 |
|
cosneg |
|- ( ( A + B ) e. CC -> ( cos ` -u ( A + B ) ) = ( cos ` ( A + B ) ) ) |
22 |
11 21
|
syl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` -u ( A + B ) ) = ( cos ` ( A + B ) ) ) |
23 |
18 20 22
|
3eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> -u ( cos ` ( C + D ) ) = ( cos ` ( A + B ) ) ) |
24 |
23
|
negeqd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> -u -u ( cos ` ( C + D ) ) = -u ( cos ` ( A + B ) ) ) |
25 |
4 24
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( C + D ) ) = -u ( cos ` ( A + B ) ) ) |
26 |
25
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) = ( ( cos ` ( C - D ) ) - -u ( cos ` ( A + B ) ) ) ) |
27 |
|
subcl |
|- ( ( C e. CC /\ D e. CC ) -> ( C - D ) e. CC ) |
28 |
27
|
adantl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( C - D ) e. CC ) |
29 |
28
|
coscld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( cos ` ( C - D ) ) e. CC ) |
30 |
29
|
3adant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( C - D ) ) e. CC ) |
31 |
11
|
coscld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( A + B ) ) e. CC ) |
32 |
30 31
|
subnegd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( C - D ) ) - -u ( cos ` ( A + B ) ) ) = ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) |
33 |
26 32
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) = ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) |
34 |
33
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) = ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) |
35 |
34
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) = ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) ) |
36 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
37 |
36
|
3ad2ant1 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( A - B ) e. CC ) |
38 |
37
|
coscld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( A - B ) ) e. CC ) |
39 |
38 31
|
subcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) e. CC ) |
40 |
30 31
|
addcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) e. CC ) |
41 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
42 |
41
|
a1i |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
43 |
|
divdir |
|- ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) e. CC /\ ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) + ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) / 2 ) = ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) ) |
44 |
39 40 42 43
|
syl3anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) + ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) / 2 ) = ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) ) |
45 |
38 31 30
|
nppcan3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) + ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) = ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) ) |
46 |
45
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) + ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) / 2 ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
47 |
44 46
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
48 |
35 47
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
49 |
|
sinmul |
|- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) = ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) ) |
50 |
49
|
3ad2ant1 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( sin ` A ) x. ( sin ` B ) ) = ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) ) |
51 |
|
sinmul |
|- ( ( C e. CC /\ D e. CC ) -> ( ( sin ` C ) x. ( sin ` D ) ) = ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) |
52 |
51
|
3ad2ant2 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( sin ` C ) x. ( sin ` D ) ) = ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) |
53 |
50 52
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( sin ` A ) x. ( sin ` B ) ) + ( ( sin ` C ) x. ( sin ` D ) ) ) = ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) ) |
54 |
|
simplr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
55 |
|
simpll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> A e. CC ) |
56 |
|
simprl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
57 |
54 55 56
|
pnpcan2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B + C ) - ( A + C ) ) = ( B - A ) ) |
58 |
57
|
fveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( cos ` ( ( B + C ) - ( A + C ) ) ) = ( cos ` ( B - A ) ) ) |
59 |
58
|
3adant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( B + C ) - ( A + C ) ) ) = ( cos ` ( B - A ) ) ) |
60 |
1
|
adantl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( C + D ) e. CC ) |
61 |
10 60 28
|
3jca |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) e. CC /\ ( C + D ) e. CC /\ ( C - D ) e. CC ) ) |
62 |
61
|
3adant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) e. CC /\ ( C + D ) e. CC /\ ( C - D ) e. CC ) ) |
63 |
|
addass |
|- ( ( ( A + B ) e. CC /\ ( C + D ) e. CC /\ ( C - D ) e. CC ) -> ( ( ( A + B ) + ( C + D ) ) + ( C - D ) ) = ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) ) |
64 |
62 63
|
syl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( A + B ) + ( C + D ) ) + ( C - D ) ) = ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) ) |
65 |
|
oveq1 |
|- ( ( ( A + B ) + ( C + D ) ) = _pi -> ( ( ( A + B ) + ( C + D ) ) + ( C - D ) ) = ( _pi + ( C - D ) ) ) |
66 |
65
|
3ad2ant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( A + B ) + ( C + D ) ) + ( C - D ) ) = ( _pi + ( C - D ) ) ) |
67 |
|
simpl |
|- ( ( C e. CC /\ D e. CC ) -> C e. CC ) |
68 |
|
simpr |
|- ( ( C e. CC /\ D e. CC ) -> D e. CC ) |
69 |
67 68 67
|
3jca |
|- ( ( C e. CC /\ D e. CC ) -> ( C e. CC /\ D e. CC /\ C e. CC ) ) |
70 |
69
|
3ad2ant2 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( C e. CC /\ D e. CC /\ C e. CC ) ) |
71 |
|
ppncan |
|- ( ( C e. CC /\ D e. CC /\ C e. CC ) -> ( ( C + D ) + ( C - D ) ) = ( C + C ) ) |
72 |
71
|
oveq2d |
|- ( ( C e. CC /\ D e. CC /\ C e. CC ) -> ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) = ( ( A + B ) + ( C + C ) ) ) |
73 |
70 72
|
syl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) = ( ( A + B ) + ( C + C ) ) ) |
74 |
|
simp1 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( A e. CC /\ B e. CC ) ) |
75 |
67 67
|
jca |
|- ( ( C e. CC /\ D e. CC ) -> ( C e. CC /\ C e. CC ) ) |
76 |
75
|
3ad2ant2 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( C e. CC /\ C e. CC ) ) |
77 |
|
add4 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ C e. CC ) ) -> ( ( A + B ) + ( C + C ) ) = ( ( A + C ) + ( B + C ) ) ) |
78 |
74 76 77
|
syl2anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) + ( C + C ) ) = ( ( A + C ) + ( B + C ) ) ) |
79 |
|
addcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A + C ) e. CC ) |
80 |
79
|
ad2ant2r |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A + C ) e. CC ) |
81 |
|
addcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) |
82 |
81
|
ad2ant2lr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B + C ) e. CC ) |
83 |
80 82
|
jca |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + C ) e. CC /\ ( B + C ) e. CC ) ) |
84 |
83
|
3adant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + C ) e. CC /\ ( B + C ) e. CC ) ) |
85 |
|
addcom |
|- ( ( ( A + C ) e. CC /\ ( B + C ) e. CC ) -> ( ( A + C ) + ( B + C ) ) = ( ( B + C ) + ( A + C ) ) ) |
86 |
84 85
|
syl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + C ) + ( B + C ) ) = ( ( B + C ) + ( A + C ) ) ) |
87 |
73 78 86
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) = ( ( B + C ) + ( A + C ) ) ) |
88 |
64 66 87
|
3eqtr3rd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( B + C ) + ( A + C ) ) = ( _pi + ( C - D ) ) ) |
89 |
|
picn |
|- _pi e. CC |
90 |
|
addcom |
|- ( ( _pi e. CC /\ ( C - D ) e. CC ) -> ( _pi + ( C - D ) ) = ( ( C - D ) + _pi ) ) |
91 |
89 28 90
|
sylancr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( _pi + ( C - D ) ) = ( ( C - D ) + _pi ) ) |
92 |
91
|
3adant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( _pi + ( C - D ) ) = ( ( C - D ) + _pi ) ) |
93 |
88 92
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( B + C ) + ( A + C ) ) = ( ( C - D ) + _pi ) ) |
94 |
93
|
fveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( B + C ) + ( A + C ) ) ) = ( cos ` ( ( C - D ) + _pi ) ) ) |
95 |
|
cosppi |
|- ( ( C - D ) e. CC -> ( cos ` ( ( C - D ) + _pi ) ) = -u ( cos ` ( C - D ) ) ) |
96 |
28 95
|
syl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( cos ` ( ( C - D ) + _pi ) ) = -u ( cos ` ( C - D ) ) ) |
97 |
96
|
3adant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( C - D ) + _pi ) ) = -u ( cos ` ( C - D ) ) ) |
98 |
94 97
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( B + C ) + ( A + C ) ) ) = -u ( cos ` ( C - D ) ) ) |
99 |
59 98
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) = ( ( cos ` ( B - A ) ) - -u ( cos ` ( C - D ) ) ) ) |
100 |
|
subcl |
|- ( ( B e. CC /\ A e. CC ) -> ( B - A ) e. CC ) |
101 |
100
|
ancoms |
|- ( ( A e. CC /\ B e. CC ) -> ( B - A ) e. CC ) |
102 |
101
|
adantr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B - A ) e. CC ) |
103 |
102
|
coscld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( cos ` ( B - A ) ) e. CC ) |
104 |
103 29
|
subnegd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( cos ` ( B - A ) ) - -u ( cos ` ( C - D ) ) ) = ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) ) |
105 |
104
|
3adant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( B - A ) ) - -u ( cos ` ( C - D ) ) ) = ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) ) |
106 |
99 105
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) = ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) ) |
107 |
106
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) / 2 ) = ( ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
108 |
|
sinmul |
|- ( ( ( B + C ) e. CC /\ ( A + C ) e. CC ) -> ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) = ( ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) / 2 ) ) |
109 |
82 80 108
|
syl2anc |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) = ( ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) / 2 ) ) |
110 |
109
|
3adant3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) = ( ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) / 2 ) ) |
111 |
|
cosneg |
|- ( ( A - B ) e. CC -> ( cos ` -u ( A - B ) ) = ( cos ` ( A - B ) ) ) |
112 |
36 111
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( cos ` -u ( A - B ) ) = ( cos ` ( A - B ) ) ) |
113 |
|
negsubdi2 |
|- ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( B - A ) ) |
114 |
113
|
fveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( cos ` -u ( A - B ) ) = ( cos ` ( B - A ) ) ) |
115 |
112 114
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A - B ) ) = ( cos ` ( B - A ) ) ) |
116 |
115
|
3ad2ant1 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( A - B ) ) = ( cos ` ( B - A ) ) ) |
117 |
116
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) = ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) ) |
118 |
117
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) = ( ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
119 |
107 110 118
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
120 |
48 53 119
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( sin ` A ) x. ( sin ` B ) ) + ( ( sin ` C ) x. ( sin ` D ) ) ) = ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) ) |