Step |
Hyp |
Ref |
Expression |
1 |
|
ptunhmeo.x |
|- X = U. K |
2 |
|
ptunhmeo.y |
|- Y = U. L |
3 |
|
ptunhmeo.j |
|- J = ( Xt_ ` F ) |
4 |
|
ptunhmeo.k |
|- K = ( Xt_ ` ( F |` A ) ) |
5 |
|
ptunhmeo.l |
|- L = ( Xt_ ` ( F |` B ) ) |
6 |
|
ptunhmeo.g |
|- G = ( x e. X , y e. Y |-> ( x u. y ) ) |
7 |
|
ptunhmeo.c |
|- ( ph -> C e. V ) |
8 |
|
ptunhmeo.f |
|- ( ph -> F : C --> Top ) |
9 |
|
ptunhmeo.u |
|- ( ph -> C = ( A u. B ) ) |
10 |
|
ptunhmeo.i |
|- ( ph -> ( A i^i B ) = (/) ) |
11 |
|
vex |
|- x e. _V |
12 |
|
vex |
|- y e. _V |
13 |
11 12
|
op1std |
|- ( w = <. x , y >. -> ( 1st ` w ) = x ) |
14 |
11 12
|
op2ndd |
|- ( w = <. x , y >. -> ( 2nd ` w ) = y ) |
15 |
13 14
|
uneq12d |
|- ( w = <. x , y >. -> ( ( 1st ` w ) u. ( 2nd ` w ) ) = ( x u. y ) ) |
16 |
15
|
mpompt |
|- ( w e. ( X X. Y ) |-> ( ( 1st ` w ) u. ( 2nd ` w ) ) ) = ( x e. X , y e. Y |-> ( x u. y ) ) |
17 |
6 16
|
eqtr4i |
|- G = ( w e. ( X X. Y ) |-> ( ( 1st ` w ) u. ( 2nd ` w ) ) ) |
18 |
|
xp1st |
|- ( w e. ( X X. Y ) -> ( 1st ` w ) e. X ) |
19 |
18
|
adantl |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 1st ` w ) e. X ) |
20 |
|
ixpeq2 |
|- ( A. k e. A U. ( ( F |` A ) ` k ) = U. ( F ` k ) -> X_ k e. A U. ( ( F |` A ) ` k ) = X_ k e. A U. ( F ` k ) ) |
21 |
|
fvres |
|- ( k e. A -> ( ( F |` A ) ` k ) = ( F ` k ) ) |
22 |
21
|
unieqd |
|- ( k e. A -> U. ( ( F |` A ) ` k ) = U. ( F ` k ) ) |
23 |
20 22
|
mprg |
|- X_ k e. A U. ( ( F |` A ) ` k ) = X_ k e. A U. ( F ` k ) |
24 |
|
ssun1 |
|- A C_ ( A u. B ) |
25 |
24 9
|
sseqtrrid |
|- ( ph -> A C_ C ) |
26 |
7 25
|
ssexd |
|- ( ph -> A e. _V ) |
27 |
8 25
|
fssresd |
|- ( ph -> ( F |` A ) : A --> Top ) |
28 |
4
|
ptuni |
|- ( ( A e. _V /\ ( F |` A ) : A --> Top ) -> X_ k e. A U. ( ( F |` A ) ` k ) = U. K ) |
29 |
26 27 28
|
syl2anc |
|- ( ph -> X_ k e. A U. ( ( F |` A ) ` k ) = U. K ) |
30 |
23 29
|
eqtr3id |
|- ( ph -> X_ k e. A U. ( F ` k ) = U. K ) |
31 |
30 1
|
eqtr4di |
|- ( ph -> X_ k e. A U. ( F ` k ) = X ) |
32 |
31
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. A U. ( F ` k ) = X ) |
33 |
19 32
|
eleqtrrd |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 1st ` w ) e. X_ k e. A U. ( F ` k ) ) |
34 |
|
xp2nd |
|- ( w e. ( X X. Y ) -> ( 2nd ` w ) e. Y ) |
35 |
34
|
adantl |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) e. Y ) |
36 |
9
|
eqcomd |
|- ( ph -> ( A u. B ) = C ) |
37 |
|
uneqdifeq |
|- ( ( A C_ C /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
38 |
25 10 37
|
syl2anc |
|- ( ph -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) |
39 |
36 38
|
mpbid |
|- ( ph -> ( C \ A ) = B ) |
40 |
39
|
ixpeq1d |
|- ( ph -> X_ k e. ( C \ A ) U. ( F ` k ) = X_ k e. B U. ( F ` k ) ) |
41 |
|
ixpeq2 |
|- ( A. k e. B U. ( ( F |` B ) ` k ) = U. ( F ` k ) -> X_ k e. B U. ( ( F |` B ) ` k ) = X_ k e. B U. ( F ` k ) ) |
42 |
|
fvres |
|- ( k e. B -> ( ( F |` B ) ` k ) = ( F ` k ) ) |
43 |
42
|
unieqd |
|- ( k e. B -> U. ( ( F |` B ) ` k ) = U. ( F ` k ) ) |
44 |
41 43
|
mprg |
|- X_ k e. B U. ( ( F |` B ) ` k ) = X_ k e. B U. ( F ` k ) |
45 |
|
ssun2 |
|- B C_ ( A u. B ) |
46 |
45 9
|
sseqtrrid |
|- ( ph -> B C_ C ) |
47 |
7 46
|
ssexd |
|- ( ph -> B e. _V ) |
48 |
8 46
|
fssresd |
|- ( ph -> ( F |` B ) : B --> Top ) |
49 |
5
|
ptuni |
|- ( ( B e. _V /\ ( F |` B ) : B --> Top ) -> X_ k e. B U. ( ( F |` B ) ` k ) = U. L ) |
50 |
47 48 49
|
syl2anc |
|- ( ph -> X_ k e. B U. ( ( F |` B ) ` k ) = U. L ) |
51 |
44 50
|
eqtr3id |
|- ( ph -> X_ k e. B U. ( F ` k ) = U. L ) |
52 |
51 2
|
eqtr4di |
|- ( ph -> X_ k e. B U. ( F ` k ) = Y ) |
53 |
40 52
|
eqtrd |
|- ( ph -> X_ k e. ( C \ A ) U. ( F ` k ) = Y ) |
54 |
53
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. ( C \ A ) U. ( F ` k ) = Y ) |
55 |
35 54
|
eleqtrrd |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) e. X_ k e. ( C \ A ) U. ( F ` k ) ) |
56 |
25
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> A C_ C ) |
57 |
|
undifixp |
|- ( ( ( 1st ` w ) e. X_ k e. A U. ( F ` k ) /\ ( 2nd ` w ) e. X_ k e. ( C \ A ) U. ( F ` k ) /\ A C_ C ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. X_ k e. C U. ( F ` k ) ) |
58 |
33 55 56 57
|
syl3anc |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. X_ k e. C U. ( F ` k ) ) |
59 |
3
|
ptuni |
|- ( ( C e. V /\ F : C --> Top ) -> X_ k e. C U. ( F ` k ) = U. J ) |
60 |
7 8 59
|
syl2anc |
|- ( ph -> X_ k e. C U. ( F ` k ) = U. J ) |
61 |
60
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. C U. ( F ` k ) = U. J ) |
62 |
58 61
|
eleqtrd |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. U. J ) |
63 |
25
|
adantr |
|- ( ( ph /\ z e. U. J ) -> A C_ C ) |
64 |
60
|
eleq2d |
|- ( ph -> ( z e. X_ k e. C U. ( F ` k ) <-> z e. U. J ) ) |
65 |
64
|
biimpar |
|- ( ( ph /\ z e. U. J ) -> z e. X_ k e. C U. ( F ` k ) ) |
66 |
|
resixp |
|- ( ( A C_ C /\ z e. X_ k e. C U. ( F ` k ) ) -> ( z |` A ) e. X_ k e. A U. ( F ` k ) ) |
67 |
63 65 66
|
syl2anc |
|- ( ( ph /\ z e. U. J ) -> ( z |` A ) e. X_ k e. A U. ( F ` k ) ) |
68 |
31
|
adantr |
|- ( ( ph /\ z e. U. J ) -> X_ k e. A U. ( F ` k ) = X ) |
69 |
67 68
|
eleqtrd |
|- ( ( ph /\ z e. U. J ) -> ( z |` A ) e. X ) |
70 |
46
|
adantr |
|- ( ( ph /\ z e. U. J ) -> B C_ C ) |
71 |
|
resixp |
|- ( ( B C_ C /\ z e. X_ k e. C U. ( F ` k ) ) -> ( z |` B ) e. X_ k e. B U. ( F ` k ) ) |
72 |
70 65 71
|
syl2anc |
|- ( ( ph /\ z e. U. J ) -> ( z |` B ) e. X_ k e. B U. ( F ` k ) ) |
73 |
52
|
adantr |
|- ( ( ph /\ z e. U. J ) -> X_ k e. B U. ( F ` k ) = Y ) |
74 |
72 73
|
eleqtrd |
|- ( ( ph /\ z e. U. J ) -> ( z |` B ) e. Y ) |
75 |
69 74
|
opelxpd |
|- ( ( ph /\ z e. U. J ) -> <. ( z |` A ) , ( z |` B ) >. e. ( X X. Y ) ) |
76 |
|
eqop |
|- ( w e. ( X X. Y ) -> ( w = <. ( z |` A ) , ( z |` B ) >. <-> ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) ) ) |
77 |
76
|
ad2antrl |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( w = <. ( z |` A ) , ( z |` B ) >. <-> ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) ) ) |
78 |
65
|
adantrl |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> z e. X_ k e. C U. ( F ` k ) ) |
79 |
|
ixpfn |
|- ( z e. X_ k e. C U. ( F ` k ) -> z Fn C ) |
80 |
|
fnresdm |
|- ( z Fn C -> ( z |` C ) = z ) |
81 |
78 79 80
|
3syl |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( z |` C ) = z ) |
82 |
9
|
reseq2d |
|- ( ph -> ( z |` C ) = ( z |` ( A u. B ) ) ) |
83 |
82
|
adantr |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( z |` C ) = ( z |` ( A u. B ) ) ) |
84 |
81 83
|
eqtr3d |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> z = ( z |` ( A u. B ) ) ) |
85 |
|
resundi |
|- ( z |` ( A u. B ) ) = ( ( z |` A ) u. ( z |` B ) ) |
86 |
84 85
|
eqtrdi |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> z = ( ( z |` A ) u. ( z |` B ) ) ) |
87 |
|
uneq12 |
|- ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) = ( ( z |` A ) u. ( z |` B ) ) ) |
88 |
87
|
eqeq2d |
|- ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) -> ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) <-> z = ( ( z |` A ) u. ( z |` B ) ) ) ) |
89 |
86 88
|
syl5ibrcom |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) -> z = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
90 |
|
ixpfn |
|- ( ( 1st ` w ) e. X_ k e. A U. ( F ` k ) -> ( 1st ` w ) Fn A ) |
91 |
33 90
|
syl |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 1st ` w ) Fn A ) |
92 |
91
|
adantrr |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 1st ` w ) Fn A ) |
93 |
|
dffn2 |
|- ( ( 1st ` w ) Fn A <-> ( 1st ` w ) : A --> _V ) |
94 |
92 93
|
sylib |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 1st ` w ) : A --> _V ) |
95 |
52
|
adantr |
|- ( ( ph /\ w e. ( X X. Y ) ) -> X_ k e. B U. ( F ` k ) = Y ) |
96 |
35 95
|
eleqtrrd |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) e. X_ k e. B U. ( F ` k ) ) |
97 |
|
ixpfn |
|- ( ( 2nd ` w ) e. X_ k e. B U. ( F ` k ) -> ( 2nd ` w ) Fn B ) |
98 |
96 97
|
syl |
|- ( ( ph /\ w e. ( X X. Y ) ) -> ( 2nd ` w ) Fn B ) |
99 |
98
|
adantrr |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 2nd ` w ) Fn B ) |
100 |
|
dffn2 |
|- ( ( 2nd ` w ) Fn B <-> ( 2nd ` w ) : B --> _V ) |
101 |
99 100
|
sylib |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 2nd ` w ) : B --> _V ) |
102 |
|
res0 |
|- ( ( 1st ` w ) |` (/) ) = (/) |
103 |
|
res0 |
|- ( ( 2nd ` w ) |` (/) ) = (/) |
104 |
102 103
|
eqtr4i |
|- ( ( 1st ` w ) |` (/) ) = ( ( 2nd ` w ) |` (/) ) |
105 |
10
|
adantr |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( A i^i B ) = (/) ) |
106 |
105
|
reseq2d |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 1st ` w ) |` (/) ) ) |
107 |
105
|
reseq2d |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 2nd ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` (/) ) ) |
108 |
104 106 107
|
3eqtr4a |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` ( A i^i B ) ) ) |
109 |
|
fresaunres1 |
|- ( ( ( 1st ` w ) : A --> _V /\ ( 2nd ` w ) : B --> _V /\ ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` ( A i^i B ) ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) = ( 1st ` w ) ) |
110 |
94 101 108 109
|
syl3anc |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) = ( 1st ` w ) ) |
111 |
110
|
eqcomd |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) ) |
112 |
|
fresaunres2 |
|- ( ( ( 1st ` w ) : A --> _V /\ ( 2nd ` w ) : B --> _V /\ ( ( 1st ` w ) |` ( A i^i B ) ) = ( ( 2nd ` w ) |` ( A i^i B ) ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) = ( 2nd ` w ) ) |
113 |
94 101 108 112
|
syl3anc |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) = ( 2nd ` w ) ) |
114 |
113
|
eqcomd |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) |
115 |
111 114
|
jca |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) /\ ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) ) |
116 |
|
reseq1 |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( z |` A ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) ) |
117 |
116
|
eqeq2d |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( 1st ` w ) = ( z |` A ) <-> ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) ) ) |
118 |
|
reseq1 |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( z |` B ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) |
119 |
118
|
eqeq2d |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( 2nd ` w ) = ( z |` B ) <-> ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) ) |
120 |
117 119
|
anbi12d |
|- ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) <-> ( ( 1st ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` A ) /\ ( 2nd ` w ) = ( ( ( 1st ` w ) u. ( 2nd ` w ) ) |` B ) ) ) ) |
121 |
115 120
|
syl5ibrcom |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( z = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) ) ) |
122 |
89 121
|
impbid |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( ( ( 1st ` w ) = ( z |` A ) /\ ( 2nd ` w ) = ( z |` B ) ) <-> z = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
123 |
77 122
|
bitrd |
|- ( ( ph /\ ( w e. ( X X. Y ) /\ z e. U. J ) ) -> ( w = <. ( z |` A ) , ( z |` B ) >. <-> z = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
124 |
17 62 75 123
|
f1ocnv2d |
|- ( ph -> ( G : ( X X. Y ) -1-1-onto-> U. J /\ `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) ) |
125 |
124
|
simprd |
|- ( ph -> `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) |