| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptunhmeo.x |  |-  X = U. K | 
						
							| 2 |  | ptunhmeo.y |  |-  Y = U. L | 
						
							| 3 |  | ptunhmeo.j |  |-  J = ( Xt_ ` F ) | 
						
							| 4 |  | ptunhmeo.k |  |-  K = ( Xt_ ` ( F |` A ) ) | 
						
							| 5 |  | ptunhmeo.l |  |-  L = ( Xt_ ` ( F |` B ) ) | 
						
							| 6 |  | ptunhmeo.g |  |-  G = ( x e. X , y e. Y |-> ( x u. y ) ) | 
						
							| 7 |  | ptunhmeo.c |  |-  ( ph -> C e. V ) | 
						
							| 8 |  | ptunhmeo.f |  |-  ( ph -> F : C --> Top ) | 
						
							| 9 |  | ptunhmeo.u |  |-  ( ph -> C = ( A u. B ) ) | 
						
							| 10 |  | ptunhmeo.i |  |-  ( ph -> ( A i^i B ) = (/) ) | 
						
							| 11 |  | vex |  |-  x e. _V | 
						
							| 12 |  | vex |  |-  y e. _V | 
						
							| 13 | 11 12 | op1std |  |-  ( z = <. x , y >. -> ( 1st ` z ) = x ) | 
						
							| 14 | 11 12 | op2ndd |  |-  ( z = <. x , y >. -> ( 2nd ` z ) = y ) | 
						
							| 15 | 13 14 | uneq12d |  |-  ( z = <. x , y >. -> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( x u. y ) ) | 
						
							| 16 | 15 | mpompt |  |-  ( z e. ( X X. Y ) |-> ( ( 1st ` z ) u. ( 2nd ` z ) ) ) = ( x e. X , y e. Y |-> ( x u. y ) ) | 
						
							| 17 | 6 16 | eqtr4i |  |-  G = ( z e. ( X X. Y ) |-> ( ( 1st ` z ) u. ( 2nd ` z ) ) ) | 
						
							| 18 |  | xp1st |  |-  ( z e. ( X X. Y ) -> ( 1st ` z ) e. X ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( 1st ` z ) e. X ) | 
						
							| 20 |  | ixpeq2 |  |-  ( A. n e. A U. ( ( F |` A ) ` n ) = U. ( F ` n ) -> X_ n e. A U. ( ( F |` A ) ` n ) = X_ n e. A U. ( F ` n ) ) | 
						
							| 21 |  | fvres |  |-  ( n e. A -> ( ( F |` A ) ` n ) = ( F ` n ) ) | 
						
							| 22 | 21 | unieqd |  |-  ( n e. A -> U. ( ( F |` A ) ` n ) = U. ( F ` n ) ) | 
						
							| 23 | 20 22 | mprg |  |-  X_ n e. A U. ( ( F |` A ) ` n ) = X_ n e. A U. ( F ` n ) | 
						
							| 24 |  | ssun1 |  |-  A C_ ( A u. B ) | 
						
							| 25 | 24 9 | sseqtrrid |  |-  ( ph -> A C_ C ) | 
						
							| 26 | 7 25 | ssexd |  |-  ( ph -> A e. _V ) | 
						
							| 27 | 8 25 | fssresd |  |-  ( ph -> ( F |` A ) : A --> Top ) | 
						
							| 28 | 4 | ptuni |  |-  ( ( A e. _V /\ ( F |` A ) : A --> Top ) -> X_ n e. A U. ( ( F |` A ) ` n ) = U. K ) | 
						
							| 29 | 26 27 28 | syl2anc |  |-  ( ph -> X_ n e. A U. ( ( F |` A ) ` n ) = U. K ) | 
						
							| 30 | 23 29 | eqtr3id |  |-  ( ph -> X_ n e. A U. ( F ` n ) = U. K ) | 
						
							| 31 | 30 1 | eqtr4di |  |-  ( ph -> X_ n e. A U. ( F ` n ) = X ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> X_ n e. A U. ( F ` n ) = X ) | 
						
							| 33 | 19 32 | eleqtrrd |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( 1st ` z ) e. X_ n e. A U. ( F ` n ) ) | 
						
							| 34 |  | xp2nd |  |-  ( z e. ( X X. Y ) -> ( 2nd ` z ) e. Y ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) e. Y ) | 
						
							| 36 | 9 | eqcomd |  |-  ( ph -> ( A u. B ) = C ) | 
						
							| 37 |  | uneqdifeq |  |-  ( ( A C_ C /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) | 
						
							| 38 | 25 10 37 | syl2anc |  |-  ( ph -> ( ( A u. B ) = C <-> ( C \ A ) = B ) ) | 
						
							| 39 | 36 38 | mpbid |  |-  ( ph -> ( C \ A ) = B ) | 
						
							| 40 | 39 | ixpeq1d |  |-  ( ph -> X_ n e. ( C \ A ) U. ( F ` n ) = X_ n e. B U. ( F ` n ) ) | 
						
							| 41 |  | ixpeq2 |  |-  ( A. n e. B U. ( ( F |` B ) ` n ) = U. ( F ` n ) -> X_ n e. B U. ( ( F |` B ) ` n ) = X_ n e. B U. ( F ` n ) ) | 
						
							| 42 |  | fvres |  |-  ( n e. B -> ( ( F |` B ) ` n ) = ( F ` n ) ) | 
						
							| 43 | 42 | unieqd |  |-  ( n e. B -> U. ( ( F |` B ) ` n ) = U. ( F ` n ) ) | 
						
							| 44 | 41 43 | mprg |  |-  X_ n e. B U. ( ( F |` B ) ` n ) = X_ n e. B U. ( F ` n ) | 
						
							| 45 |  | ssun2 |  |-  B C_ ( A u. B ) | 
						
							| 46 | 45 9 | sseqtrrid |  |-  ( ph -> B C_ C ) | 
						
							| 47 | 7 46 | ssexd |  |-  ( ph -> B e. _V ) | 
						
							| 48 | 8 46 | fssresd |  |-  ( ph -> ( F |` B ) : B --> Top ) | 
						
							| 49 | 5 | ptuni |  |-  ( ( B e. _V /\ ( F |` B ) : B --> Top ) -> X_ n e. B U. ( ( F |` B ) ` n ) = U. L ) | 
						
							| 50 | 47 48 49 | syl2anc |  |-  ( ph -> X_ n e. B U. ( ( F |` B ) ` n ) = U. L ) | 
						
							| 51 | 44 50 | eqtr3id |  |-  ( ph -> X_ n e. B U. ( F ` n ) = U. L ) | 
						
							| 52 | 51 2 | eqtr4di |  |-  ( ph -> X_ n e. B U. ( F ` n ) = Y ) | 
						
							| 53 | 40 52 | eqtrd |  |-  ( ph -> X_ n e. ( C \ A ) U. ( F ` n ) = Y ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> X_ n e. ( C \ A ) U. ( F ` n ) = Y ) | 
						
							| 55 | 35 54 | eleqtrrd |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) e. X_ n e. ( C \ A ) U. ( F ` n ) ) | 
						
							| 56 | 25 | adantr |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> A C_ C ) | 
						
							| 57 |  | undifixp |  |-  ( ( ( 1st ` z ) e. X_ n e. A U. ( F ` n ) /\ ( 2nd ` z ) e. X_ n e. ( C \ A ) U. ( F ` n ) /\ A C_ C ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. X_ n e. C U. ( F ` n ) ) | 
						
							| 58 | 33 55 56 57 | syl3anc |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. X_ n e. C U. ( F ` n ) ) | 
						
							| 59 |  | ixpfn |  |-  ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. X_ n e. C U. ( F ` n ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) Fn C ) | 
						
							| 60 | 58 59 | syl |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) Fn C ) | 
						
							| 61 |  | dffn5 |  |-  ( ( ( 1st ` z ) u. ( 2nd ` z ) ) Fn C <-> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) | 
						
							| 62 | 60 61 | sylib |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) | 
						
							| 63 | 62 | mpteq2dva |  |-  ( ph -> ( z e. ( X X. Y ) |-> ( ( 1st ` z ) u. ( 2nd ` z ) ) ) = ( z e. ( X X. Y ) |-> ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) ) | 
						
							| 64 | 17 63 | eqtrid |  |-  ( ph -> G = ( z e. ( X X. Y ) |-> ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) ) | 
						
							| 65 |  | pttop |  |-  ( ( A e. _V /\ ( F |` A ) : A --> Top ) -> ( Xt_ ` ( F |` A ) ) e. Top ) | 
						
							| 66 | 26 27 65 | syl2anc |  |-  ( ph -> ( Xt_ ` ( F |` A ) ) e. Top ) | 
						
							| 67 | 4 66 | eqeltrid |  |-  ( ph -> K e. Top ) | 
						
							| 68 | 1 | toptopon |  |-  ( K e. Top <-> K e. ( TopOn ` X ) ) | 
						
							| 69 | 67 68 | sylib |  |-  ( ph -> K e. ( TopOn ` X ) ) | 
						
							| 70 |  | pttop |  |-  ( ( B e. _V /\ ( F |` B ) : B --> Top ) -> ( Xt_ ` ( F |` B ) ) e. Top ) | 
						
							| 71 | 47 48 70 | syl2anc |  |-  ( ph -> ( Xt_ ` ( F |` B ) ) e. Top ) | 
						
							| 72 | 5 71 | eqeltrid |  |-  ( ph -> L e. Top ) | 
						
							| 73 | 2 | toptopon |  |-  ( L e. Top <-> L e. ( TopOn ` Y ) ) | 
						
							| 74 | 72 73 | sylib |  |-  ( ph -> L e. ( TopOn ` Y ) ) | 
						
							| 75 |  | txtopon |  |-  ( ( K e. ( TopOn ` X ) /\ L e. ( TopOn ` Y ) ) -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) | 
						
							| 76 | 69 74 75 | syl2anc |  |-  ( ph -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) | 
						
							| 77 | 9 | eleq2d |  |-  ( ph -> ( k e. C <-> k e. ( A u. B ) ) ) | 
						
							| 78 | 77 | biimpa |  |-  ( ( ph /\ k e. C ) -> k e. ( A u. B ) ) | 
						
							| 79 |  | elun |  |-  ( k e. ( A u. B ) <-> ( k e. A \/ k e. B ) ) | 
						
							| 80 | 78 79 | sylib |  |-  ( ( ph /\ k e. C ) -> ( k e. A \/ k e. B ) ) | 
						
							| 81 |  | ixpfn |  |-  ( ( 1st ` z ) e. X_ n e. A U. ( F ` n ) -> ( 1st ` z ) Fn A ) | 
						
							| 82 | 33 81 | syl |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( 1st ` z ) Fn A ) | 
						
							| 83 | 82 | adantlr |  |-  ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( 1st ` z ) Fn A ) | 
						
							| 84 | 52 | adantr |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> X_ n e. B U. ( F ` n ) = Y ) | 
						
							| 85 | 35 84 | eleqtrrd |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) e. X_ n e. B U. ( F ` n ) ) | 
						
							| 86 |  | ixpfn |  |-  ( ( 2nd ` z ) e. X_ n e. B U. ( F ` n ) -> ( 2nd ` z ) Fn B ) | 
						
							| 87 | 85 86 | syl |  |-  ( ( ph /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) Fn B ) | 
						
							| 88 | 87 | adantlr |  |-  ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) Fn B ) | 
						
							| 89 | 10 | ad2antrr |  |-  ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( A i^i B ) = (/) ) | 
						
							| 90 |  | simplr |  |-  ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> k e. A ) | 
						
							| 91 |  | fvun1 |  |-  ( ( ( 1st ` z ) Fn A /\ ( 2nd ` z ) Fn B /\ ( ( A i^i B ) = (/) /\ k e. A ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 1st ` z ) ` k ) ) | 
						
							| 92 | 83 88 89 90 91 | syl112anc |  |-  ( ( ( ph /\ k e. A ) /\ z e. ( X X. Y ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 1st ` z ) ` k ) ) | 
						
							| 93 | 92 | mpteq2dva |  |-  ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) = ( z e. ( X X. Y ) |-> ( ( 1st ` z ) ` k ) ) ) | 
						
							| 94 | 76 | adantr |  |-  ( ( ph /\ k e. A ) -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) | 
						
							| 95 | 13 | mpompt |  |-  ( z e. ( X X. Y ) |-> ( 1st ` z ) ) = ( x e. X , y e. Y |-> x ) | 
						
							| 96 | 69 | adantr |  |-  ( ( ph /\ k e. A ) -> K e. ( TopOn ` X ) ) | 
						
							| 97 | 74 | adantr |  |-  ( ( ph /\ k e. A ) -> L e. ( TopOn ` Y ) ) | 
						
							| 98 | 96 97 | cnmpt1st |  |-  ( ( ph /\ k e. A ) -> ( x e. X , y e. Y |-> x ) e. ( ( K tX L ) Cn K ) ) | 
						
							| 99 | 95 98 | eqeltrid |  |-  ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( 1st ` z ) ) e. ( ( K tX L ) Cn K ) ) | 
						
							| 100 | 26 | adantr |  |-  ( ( ph /\ k e. A ) -> A e. _V ) | 
						
							| 101 | 27 | adantr |  |-  ( ( ph /\ k e. A ) -> ( F |` A ) : A --> Top ) | 
						
							| 102 |  | simpr |  |-  ( ( ph /\ k e. A ) -> k e. A ) | 
						
							| 103 | 1 4 | ptpjcn |  |-  ( ( A e. _V /\ ( F |` A ) : A --> Top /\ k e. A ) -> ( f e. X |-> ( f ` k ) ) e. ( K Cn ( ( F |` A ) ` k ) ) ) | 
						
							| 104 | 100 101 102 103 | syl3anc |  |-  ( ( ph /\ k e. A ) -> ( f e. X |-> ( f ` k ) ) e. ( K Cn ( ( F |` A ) ` k ) ) ) | 
						
							| 105 |  | fvres |  |-  ( k e. A -> ( ( F |` A ) ` k ) = ( F ` k ) ) | 
						
							| 106 | 105 | adantl |  |-  ( ( ph /\ k e. A ) -> ( ( F |` A ) ` k ) = ( F ` k ) ) | 
						
							| 107 | 106 | oveq2d |  |-  ( ( ph /\ k e. A ) -> ( K Cn ( ( F |` A ) ` k ) ) = ( K Cn ( F ` k ) ) ) | 
						
							| 108 | 104 107 | eleqtrd |  |-  ( ( ph /\ k e. A ) -> ( f e. X |-> ( f ` k ) ) e. ( K Cn ( F ` k ) ) ) | 
						
							| 109 |  | fveq1 |  |-  ( f = ( 1st ` z ) -> ( f ` k ) = ( ( 1st ` z ) ` k ) ) | 
						
							| 110 | 94 99 96 108 109 | cnmpt11 |  |-  ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( ( 1st ` z ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) | 
						
							| 111 | 93 110 | eqeltrd |  |-  ( ( ph /\ k e. A ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) | 
						
							| 112 | 82 | adantlr |  |-  ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( 1st ` z ) Fn A ) | 
						
							| 113 | 87 | adantlr |  |-  ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( 2nd ` z ) Fn B ) | 
						
							| 114 | 10 | ad2antrr |  |-  ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( A i^i B ) = (/) ) | 
						
							| 115 |  | simplr |  |-  ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> k e. B ) | 
						
							| 116 |  | fvun2 |  |-  ( ( ( 1st ` z ) Fn A /\ ( 2nd ` z ) Fn B /\ ( ( A i^i B ) = (/) /\ k e. B ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 2nd ` z ) ` k ) ) | 
						
							| 117 | 112 113 114 115 116 | syl112anc |  |-  ( ( ( ph /\ k e. B ) /\ z e. ( X X. Y ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) = ( ( 2nd ` z ) ` k ) ) | 
						
							| 118 | 117 | mpteq2dva |  |-  ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) = ( z e. ( X X. Y ) |-> ( ( 2nd ` z ) ` k ) ) ) | 
						
							| 119 | 76 | adantr |  |-  ( ( ph /\ k e. B ) -> ( K tX L ) e. ( TopOn ` ( X X. Y ) ) ) | 
						
							| 120 | 14 | mpompt |  |-  ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) = ( x e. X , y e. Y |-> y ) | 
						
							| 121 | 69 | adantr |  |-  ( ( ph /\ k e. B ) -> K e. ( TopOn ` X ) ) | 
						
							| 122 | 74 | adantr |  |-  ( ( ph /\ k e. B ) -> L e. ( TopOn ` Y ) ) | 
						
							| 123 | 121 122 | cnmpt2nd |  |-  ( ( ph /\ k e. B ) -> ( x e. X , y e. Y |-> y ) e. ( ( K tX L ) Cn L ) ) | 
						
							| 124 | 120 123 | eqeltrid |  |-  ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) e. ( ( K tX L ) Cn L ) ) | 
						
							| 125 | 47 | adantr |  |-  ( ( ph /\ k e. B ) -> B e. _V ) | 
						
							| 126 | 48 | adantr |  |-  ( ( ph /\ k e. B ) -> ( F |` B ) : B --> Top ) | 
						
							| 127 |  | simpr |  |-  ( ( ph /\ k e. B ) -> k e. B ) | 
						
							| 128 | 2 5 | ptpjcn |  |-  ( ( B e. _V /\ ( F |` B ) : B --> Top /\ k e. B ) -> ( f e. Y |-> ( f ` k ) ) e. ( L Cn ( ( F |` B ) ` k ) ) ) | 
						
							| 129 | 125 126 127 128 | syl3anc |  |-  ( ( ph /\ k e. B ) -> ( f e. Y |-> ( f ` k ) ) e. ( L Cn ( ( F |` B ) ` k ) ) ) | 
						
							| 130 |  | fvres |  |-  ( k e. B -> ( ( F |` B ) ` k ) = ( F ` k ) ) | 
						
							| 131 | 130 | adantl |  |-  ( ( ph /\ k e. B ) -> ( ( F |` B ) ` k ) = ( F ` k ) ) | 
						
							| 132 | 131 | oveq2d |  |-  ( ( ph /\ k e. B ) -> ( L Cn ( ( F |` B ) ` k ) ) = ( L Cn ( F ` k ) ) ) | 
						
							| 133 | 129 132 | eleqtrd |  |-  ( ( ph /\ k e. B ) -> ( f e. Y |-> ( f ` k ) ) e. ( L Cn ( F ` k ) ) ) | 
						
							| 134 |  | fveq1 |  |-  ( f = ( 2nd ` z ) -> ( f ` k ) = ( ( 2nd ` z ) ` k ) ) | 
						
							| 135 | 119 124 122 133 134 | cnmpt11 |  |-  ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( ( 2nd ` z ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) | 
						
							| 136 | 118 135 | eqeltrd |  |-  ( ( ph /\ k e. B ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) | 
						
							| 137 | 111 136 | jaodan |  |-  ( ( ph /\ ( k e. A \/ k e. B ) ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) | 
						
							| 138 | 80 137 | syldan |  |-  ( ( ph /\ k e. C ) -> ( z e. ( X X. Y ) |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) e. ( ( K tX L ) Cn ( F ` k ) ) ) | 
						
							| 139 | 3 76 7 8 138 | ptcn |  |-  ( ph -> ( z e. ( X X. Y ) |-> ( k e. C |-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) ` k ) ) ) e. ( ( K tX L ) Cn J ) ) | 
						
							| 140 | 64 139 | eqeltrd |  |-  ( ph -> G e. ( ( K tX L ) Cn J ) ) | 
						
							| 141 | 1 2 3 4 5 6 7 8 9 10 | ptuncnv |  |-  ( ph -> `' G = ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) ) | 
						
							| 142 |  | pttop |  |-  ( ( C e. V /\ F : C --> Top ) -> ( Xt_ ` F ) e. Top ) | 
						
							| 143 | 7 8 142 | syl2anc |  |-  ( ph -> ( Xt_ ` F ) e. Top ) | 
						
							| 144 | 3 143 | eqeltrid |  |-  ( ph -> J e. Top ) | 
						
							| 145 |  | eqid |  |-  U. J = U. J | 
						
							| 146 | 145 | toptopon |  |-  ( J e. Top <-> J e. ( TopOn ` U. J ) ) | 
						
							| 147 | 144 146 | sylib |  |-  ( ph -> J e. ( TopOn ` U. J ) ) | 
						
							| 148 | 145 3 4 | ptrescn |  |-  ( ( C e. V /\ F : C --> Top /\ A C_ C ) -> ( z e. U. J |-> ( z |` A ) ) e. ( J Cn K ) ) | 
						
							| 149 | 7 8 25 148 | syl3anc |  |-  ( ph -> ( z e. U. J |-> ( z |` A ) ) e. ( J Cn K ) ) | 
						
							| 150 | 145 3 5 | ptrescn |  |-  ( ( C e. V /\ F : C --> Top /\ B C_ C ) -> ( z e. U. J |-> ( z |` B ) ) e. ( J Cn L ) ) | 
						
							| 151 | 7 8 46 150 | syl3anc |  |-  ( ph -> ( z e. U. J |-> ( z |` B ) ) e. ( J Cn L ) ) | 
						
							| 152 | 147 149 151 | cnmpt1t |  |-  ( ph -> ( z e. U. J |-> <. ( z |` A ) , ( z |` B ) >. ) e. ( J Cn ( K tX L ) ) ) | 
						
							| 153 | 141 152 | eqeltrd |  |-  ( ph -> `' G e. ( J Cn ( K tX L ) ) ) | 
						
							| 154 |  | ishmeo |  |-  ( G e. ( ( K tX L ) Homeo J ) <-> ( G e. ( ( K tX L ) Cn J ) /\ `' G e. ( J Cn ( K tX L ) ) ) ) | 
						
							| 155 | 140 153 154 | sylanbrc |  |-  ( ph -> G e. ( ( K tX L ) Homeo J ) ) |