Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
2 |
|
ovexd |
|- ( A e. V -> ( { (/) , { (/) } } ^m A ) e. _V ) |
3 |
|
id |
|- ( A e. V -> A e. V ) |
4 |
|
0ex |
|- (/) e. _V |
5 |
4
|
a1i |
|- ( A e. V -> (/) e. _V ) |
6 |
|
p0ex |
|- { (/) } e. _V |
7 |
6
|
a1i |
|- ( A e. V -> { (/) } e. _V ) |
8 |
|
0nep0 |
|- (/) =/= { (/) } |
9 |
8
|
a1i |
|- ( A e. V -> (/) =/= { (/) } ) |
10 |
|
eqid |
|- ( x e. ~P A |-> ( z e. A |-> if ( z e. x , { (/) } , (/) ) ) ) = ( x e. ~P A |-> ( z e. A |-> if ( z e. x , { (/) } , (/) ) ) ) |
11 |
3 5 7 9 10
|
pw2f1o |
|- ( A e. V -> ( x e. ~P A |-> ( z e. A |-> if ( z e. x , { (/) } , (/) ) ) ) : ~P A -1-1-onto-> ( { (/) , { (/) } } ^m A ) ) |
12 |
|
f1oen2g |
|- ( ( ~P A e. _V /\ ( { (/) , { (/) } } ^m A ) e. _V /\ ( x e. ~P A |-> ( z e. A |-> if ( z e. x , { (/) } , (/) ) ) ) : ~P A -1-1-onto-> ( { (/) , { (/) } } ^m A ) ) -> ~P A ~~ ( { (/) , { (/) } } ^m A ) ) |
13 |
1 2 11 12
|
syl3anc |
|- ( A e. V -> ~P A ~~ ( { (/) , { (/) } } ^m A ) ) |
14 |
|
df2o2 |
|- 2o = { (/) , { (/) } } |
15 |
14
|
oveq1i |
|- ( 2o ^m A ) = ( { (/) , { (/) } } ^m A ) |
16 |
13 15
|
breqtrrdi |
|- ( A e. V -> ~P A ~~ ( 2o ^m A ) ) |