Metamath Proof Explorer


Theorem pw2f1o2

Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en , which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypothesis pw2f1o2.f
|- F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) )
Assertion pw2f1o2
|- ( A e. V -> F : ( 2o ^m A ) -1-1-onto-> ~P A )

Proof

Step Hyp Ref Expression
1 pw2f1o2.f
 |-  F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) )
2 1 pw2f1ocnv
 |-  ( A e. V -> ( F : ( 2o ^m A ) -1-1-onto-> ~P A /\ `' F = ( y e. ~P A |-> ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) ) )
3 2 simpld
 |-  ( A e. V -> F : ( 2o ^m A ) -1-1-onto-> ~P A )