Step |
Hyp |
Ref |
Expression |
1 |
|
pw2f1o2.f |
|- F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) ) |
2 |
|
cnvexg |
|- ( X e. ( 2o ^m A ) -> `' X e. _V ) |
3 |
|
imaexg |
|- ( `' X e. _V -> ( `' X " { 1o } ) e. _V ) |
4 |
2 3
|
syl |
|- ( X e. ( 2o ^m A ) -> ( `' X " { 1o } ) e. _V ) |
5 |
|
cnveq |
|- ( x = X -> `' x = `' X ) |
6 |
5
|
imaeq1d |
|- ( x = X -> ( `' x " { 1o } ) = ( `' X " { 1o } ) ) |
7 |
6 1
|
fvmptg |
|- ( ( X e. ( 2o ^m A ) /\ ( `' X " { 1o } ) e. _V ) -> ( F ` X ) = ( `' X " { 1o } ) ) |
8 |
4 7
|
mpdan |
|- ( X e. ( 2o ^m A ) -> ( F ` X ) = ( `' X " { 1o } ) ) |