| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pw2f1o2.f |  |-  F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) ) | 
						
							| 2 |  | cnvexg |  |-  ( X e. ( 2o ^m A ) -> `' X e. _V ) | 
						
							| 3 |  | imaexg |  |-  ( `' X e. _V -> ( `' X " { 1o } ) e. _V ) | 
						
							| 4 | 2 3 | syl |  |-  ( X e. ( 2o ^m A ) -> ( `' X " { 1o } ) e. _V ) | 
						
							| 5 |  | cnveq |  |-  ( x = X -> `' x = `' X ) | 
						
							| 6 | 5 | imaeq1d |  |-  ( x = X -> ( `' x " { 1o } ) = ( `' X " { 1o } ) ) | 
						
							| 7 | 6 1 | fvmptg |  |-  ( ( X e. ( 2o ^m A ) /\ ( `' X " { 1o } ) e. _V ) -> ( F ` X ) = ( `' X " { 1o } ) ) | 
						
							| 8 | 4 7 | mpdan |  |-  ( X e. ( 2o ^m A ) -> ( F ` X ) = ( `' X " { 1o } ) ) |