| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pw2f1o2.f |  |-  F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) ) | 
						
							| 2 | 1 | pw2f1o2val |  |-  ( X e. ( 2o ^m A ) -> ( F ` X ) = ( `' X " { 1o } ) ) | 
						
							| 3 | 2 | eleq2d |  |-  ( X e. ( 2o ^m A ) -> ( Y e. ( F ` X ) <-> Y e. ( `' X " { 1o } ) ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( F ` X ) <-> Y e. ( `' X " { 1o } ) ) ) | 
						
							| 5 |  | elmapi |  |-  ( X e. ( 2o ^m A ) -> X : A --> 2o ) | 
						
							| 6 |  | ffn |  |-  ( X : A --> 2o -> X Fn A ) | 
						
							| 7 |  | fniniseg |  |-  ( X Fn A -> ( Y e. ( `' X " { 1o } ) <-> ( Y e. A /\ ( X ` Y ) = 1o ) ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( X e. ( 2o ^m A ) -> ( Y e. ( `' X " { 1o } ) <-> ( Y e. A /\ ( X ` Y ) = 1o ) ) ) | 
						
							| 9 | 8 | baibd |  |-  ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( `' X " { 1o } ) <-> ( X ` Y ) = 1o ) ) | 
						
							| 10 | 4 9 | bitrd |  |-  ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( F ` X ) <-> ( X ` Y ) = 1o ) ) |