Step |
Hyp |
Ref |
Expression |
1 |
|
pw2f1o2.f |
|- F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) ) |
2 |
1
|
pw2f1o2val |
|- ( X e. ( 2o ^m A ) -> ( F ` X ) = ( `' X " { 1o } ) ) |
3 |
2
|
eleq2d |
|- ( X e. ( 2o ^m A ) -> ( Y e. ( F ` X ) <-> Y e. ( `' X " { 1o } ) ) ) |
4 |
3
|
adantr |
|- ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( F ` X ) <-> Y e. ( `' X " { 1o } ) ) ) |
5 |
|
elmapi |
|- ( X e. ( 2o ^m A ) -> X : A --> 2o ) |
6 |
|
ffn |
|- ( X : A --> 2o -> X Fn A ) |
7 |
|
fniniseg |
|- ( X Fn A -> ( Y e. ( `' X " { 1o } ) <-> ( Y e. A /\ ( X ` Y ) = 1o ) ) ) |
8 |
5 6 7
|
3syl |
|- ( X e. ( 2o ^m A ) -> ( Y e. ( `' X " { 1o } ) <-> ( Y e. A /\ ( X ` Y ) = 1o ) ) ) |
9 |
8
|
baibd |
|- ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( `' X " { 1o } ) <-> ( X ` Y ) = 1o ) ) |
10 |
4 9
|
bitrd |
|- ( ( X e. ( 2o ^m A ) /\ Y e. A ) -> ( Y e. ( F ` X ) <-> ( X ` Y ) = 1o ) ) |