Step |
Hyp |
Ref |
Expression |
1 |
|
pw2f1o2.f |
|- F = ( x e. ( 2o ^m A ) |-> ( `' x " { 1o } ) ) |
2 |
|
vex |
|- x e. _V |
3 |
2
|
cnvex |
|- `' x e. _V |
4 |
|
imaexg |
|- ( `' x e. _V -> ( `' x " { 1o } ) e. _V ) |
5 |
3 4
|
mp1i |
|- ( ( A e. V /\ x e. ( 2o ^m A ) ) -> ( `' x " { 1o } ) e. _V ) |
6 |
|
mptexg |
|- ( A e. V -> ( z e. A |-> if ( z e. y , 1o , (/) ) ) e. _V ) |
7 |
6
|
adantr |
|- ( ( A e. V /\ y e. ~P A ) -> ( z e. A |-> if ( z e. y , 1o , (/) ) ) e. _V ) |
8 |
|
2on |
|- 2o e. On |
9 |
|
elmapg |
|- ( ( 2o e. On /\ A e. V ) -> ( x e. ( 2o ^m A ) <-> x : A --> 2o ) ) |
10 |
8 9
|
mpan |
|- ( A e. V -> ( x e. ( 2o ^m A ) <-> x : A --> 2o ) ) |
11 |
10
|
anbi1d |
|- ( A e. V -> ( ( x e. ( 2o ^m A ) /\ y = ( `' x " { 1o } ) ) <-> ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) ) ) |
12 |
|
1oex |
|- 1o e. _V |
13 |
12
|
sucid |
|- 1o e. suc 1o |
14 |
|
df-2o |
|- 2o = suc 1o |
15 |
13 14
|
eleqtrri |
|- 1o e. 2o |
16 |
|
0ex |
|- (/) e. _V |
17 |
16
|
prid1 |
|- (/) e. { (/) , { (/) } } |
18 |
|
df2o2 |
|- 2o = { (/) , { (/) } } |
19 |
17 18
|
eleqtrri |
|- (/) e. 2o |
20 |
15 19
|
ifcli |
|- if ( z e. y , 1o , (/) ) e. 2o |
21 |
20
|
rgenw |
|- A. z e. A if ( z e. y , 1o , (/) ) e. 2o |
22 |
|
eqid |
|- ( z e. A |-> if ( z e. y , 1o , (/) ) ) = ( z e. A |-> if ( z e. y , 1o , (/) ) ) |
23 |
22
|
fmpt |
|- ( A. z e. A if ( z e. y , 1o , (/) ) e. 2o <-> ( z e. A |-> if ( z e. y , 1o , (/) ) ) : A --> 2o ) |
24 |
21 23
|
mpbi |
|- ( z e. A |-> if ( z e. y , 1o , (/) ) ) : A --> 2o |
25 |
|
simpr |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) |
26 |
25
|
feq1d |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> ( x : A --> 2o <-> ( z e. A |-> if ( z e. y , 1o , (/) ) ) : A --> 2o ) ) |
27 |
24 26
|
mpbiri |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> x : A --> 2o ) |
28 |
|
iftrue |
|- ( w e. y -> if ( w e. y , 1o , (/) ) = 1o ) |
29 |
|
noel |
|- -. (/) e. (/) |
30 |
|
iffalse |
|- ( -. w e. y -> if ( w e. y , 1o , (/) ) = (/) ) |
31 |
30
|
eqeq1d |
|- ( -. w e. y -> ( if ( w e. y , 1o , (/) ) = 1o <-> (/) = 1o ) ) |
32 |
|
0lt1o |
|- (/) e. 1o |
33 |
|
eleq2 |
|- ( (/) = 1o -> ( (/) e. (/) <-> (/) e. 1o ) ) |
34 |
32 33
|
mpbiri |
|- ( (/) = 1o -> (/) e. (/) ) |
35 |
31 34
|
syl6bi |
|- ( -. w e. y -> ( if ( w e. y , 1o , (/) ) = 1o -> (/) e. (/) ) ) |
36 |
29 35
|
mtoi |
|- ( -. w e. y -> -. if ( w e. y , 1o , (/) ) = 1o ) |
37 |
36
|
con4i |
|- ( if ( w e. y , 1o , (/) ) = 1o -> w e. y ) |
38 |
28 37
|
impbii |
|- ( w e. y <-> if ( w e. y , 1o , (/) ) = 1o ) |
39 |
25
|
fveq1d |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> ( x ` w ) = ( ( z e. A |-> if ( z e. y , 1o , (/) ) ) ` w ) ) |
40 |
|
elequ1 |
|- ( z = w -> ( z e. y <-> w e. y ) ) |
41 |
40
|
ifbid |
|- ( z = w -> if ( z e. y , 1o , (/) ) = if ( w e. y , 1o , (/) ) ) |
42 |
12 16
|
ifcli |
|- if ( w e. y , 1o , (/) ) e. _V |
43 |
41 22 42
|
fvmpt |
|- ( w e. A -> ( ( z e. A |-> if ( z e. y , 1o , (/) ) ) ` w ) = if ( w e. y , 1o , (/) ) ) |
44 |
39 43
|
sylan9eq |
|- ( ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) /\ w e. A ) -> ( x ` w ) = if ( w e. y , 1o , (/) ) ) |
45 |
44
|
eqeq1d |
|- ( ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) /\ w e. A ) -> ( ( x ` w ) = 1o <-> if ( w e. y , 1o , (/) ) = 1o ) ) |
46 |
38 45
|
bitr4id |
|- ( ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) /\ w e. A ) -> ( w e. y <-> ( x ` w ) = 1o ) ) |
47 |
|
fvex |
|- ( x ` w ) e. _V |
48 |
47
|
elsn |
|- ( ( x ` w ) e. { 1o } <-> ( x ` w ) = 1o ) |
49 |
46 48
|
bitr4di |
|- ( ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) /\ w e. A ) -> ( w e. y <-> ( x ` w ) e. { 1o } ) ) |
50 |
49
|
pm5.32da |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> ( ( w e. A /\ w e. y ) <-> ( w e. A /\ ( x ` w ) e. { 1o } ) ) ) |
51 |
|
ssel |
|- ( y C_ A -> ( w e. y -> w e. A ) ) |
52 |
51
|
adantr |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> ( w e. y -> w e. A ) ) |
53 |
52
|
pm4.71rd |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> ( w e. y <-> ( w e. A /\ w e. y ) ) ) |
54 |
|
ffn |
|- ( x : A --> 2o -> x Fn A ) |
55 |
|
elpreima |
|- ( x Fn A -> ( w e. ( `' x " { 1o } ) <-> ( w e. A /\ ( x ` w ) e. { 1o } ) ) ) |
56 |
27 54 55
|
3syl |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> ( w e. ( `' x " { 1o } ) <-> ( w e. A /\ ( x ` w ) e. { 1o } ) ) ) |
57 |
50 53 56
|
3bitr4d |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> ( w e. y <-> w e. ( `' x " { 1o } ) ) ) |
58 |
57
|
eqrdv |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> y = ( `' x " { 1o } ) ) |
59 |
27 58
|
jca |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) -> ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) ) |
60 |
|
simpr |
|- ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) -> y = ( `' x " { 1o } ) ) |
61 |
|
cnvimass |
|- ( `' x " { 1o } ) C_ dom x |
62 |
|
fdm |
|- ( x : A --> 2o -> dom x = A ) |
63 |
62
|
adantr |
|- ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) -> dom x = A ) |
64 |
61 63
|
sseqtrid |
|- ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) -> ( `' x " { 1o } ) C_ A ) |
65 |
60 64
|
eqsstrd |
|- ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) -> y C_ A ) |
66 |
|
simplr |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> y = ( `' x " { 1o } ) ) |
67 |
66
|
eleq2d |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( w e. y <-> w e. ( `' x " { 1o } ) ) ) |
68 |
54
|
adantr |
|- ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) -> x Fn A ) |
69 |
|
fnbrfvb |
|- ( ( x Fn A /\ w e. A ) -> ( ( x ` w ) = 1o <-> w x 1o ) ) |
70 |
68 69
|
sylan |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( ( x ` w ) = 1o <-> w x 1o ) ) |
71 |
|
1on |
|- 1o e. On |
72 |
|
vex |
|- w e. _V |
73 |
72
|
eliniseg |
|- ( 1o e. On -> ( w e. ( `' x " { 1o } ) <-> w x 1o ) ) |
74 |
71 73
|
ax-mp |
|- ( w e. ( `' x " { 1o } ) <-> w x 1o ) |
75 |
70 74
|
bitr4di |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( ( x ` w ) = 1o <-> w e. ( `' x " { 1o } ) ) ) |
76 |
67 75
|
bitr4d |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( w e. y <-> ( x ` w ) = 1o ) ) |
77 |
76
|
biimpa |
|- ( ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) /\ w e. y ) -> ( x ` w ) = 1o ) |
78 |
28
|
adantl |
|- ( ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) /\ w e. y ) -> if ( w e. y , 1o , (/) ) = 1o ) |
79 |
77 78
|
eqtr4d |
|- ( ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) /\ w e. y ) -> ( x ` w ) = if ( w e. y , 1o , (/) ) ) |
80 |
|
ffvelrn |
|- ( ( x : A --> 2o /\ w e. A ) -> ( x ` w ) e. 2o ) |
81 |
80
|
adantlr |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( x ` w ) e. 2o ) |
82 |
|
df2o3 |
|- 2o = { (/) , 1o } |
83 |
81 82
|
eleqtrdi |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( x ` w ) e. { (/) , 1o } ) |
84 |
47
|
elpr |
|- ( ( x ` w ) e. { (/) , 1o } <-> ( ( x ` w ) = (/) \/ ( x ` w ) = 1o ) ) |
85 |
83 84
|
sylib |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( ( x ` w ) = (/) \/ ( x ` w ) = 1o ) ) |
86 |
85
|
ord |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( -. ( x ` w ) = (/) -> ( x ` w ) = 1o ) ) |
87 |
86 76
|
sylibrd |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( -. ( x ` w ) = (/) -> w e. y ) ) |
88 |
87
|
con1d |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( -. w e. y -> ( x ` w ) = (/) ) ) |
89 |
88
|
imp |
|- ( ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) /\ -. w e. y ) -> ( x ` w ) = (/) ) |
90 |
30
|
adantl |
|- ( ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) /\ -. w e. y ) -> if ( w e. y , 1o , (/) ) = (/) ) |
91 |
89 90
|
eqtr4d |
|- ( ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) /\ -. w e. y ) -> ( x ` w ) = if ( w e. y , 1o , (/) ) ) |
92 |
79 91
|
pm2.61dan |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( x ` w ) = if ( w e. y , 1o , (/) ) ) |
93 |
43
|
adantl |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( ( z e. A |-> if ( z e. y , 1o , (/) ) ) ` w ) = if ( w e. y , 1o , (/) ) ) |
94 |
92 93
|
eqtr4d |
|- ( ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) /\ w e. A ) -> ( x ` w ) = ( ( z e. A |-> if ( z e. y , 1o , (/) ) ) ` w ) ) |
95 |
94
|
ralrimiva |
|- ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) -> A. w e. A ( x ` w ) = ( ( z e. A |-> if ( z e. y , 1o , (/) ) ) ` w ) ) |
96 |
|
ffn |
|- ( ( z e. A |-> if ( z e. y , 1o , (/) ) ) : A --> 2o -> ( z e. A |-> if ( z e. y , 1o , (/) ) ) Fn A ) |
97 |
24 96
|
ax-mp |
|- ( z e. A |-> if ( z e. y , 1o , (/) ) ) Fn A |
98 |
|
eqfnfv |
|- ( ( x Fn A /\ ( z e. A |-> if ( z e. y , 1o , (/) ) ) Fn A ) -> ( x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) <-> A. w e. A ( x ` w ) = ( ( z e. A |-> if ( z e. y , 1o , (/) ) ) ` w ) ) ) |
99 |
68 97 98
|
sylancl |
|- ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) -> ( x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) <-> A. w e. A ( x ` w ) = ( ( z e. A |-> if ( z e. y , 1o , (/) ) ) ` w ) ) ) |
100 |
95 99
|
mpbird |
|- ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) -> x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) |
101 |
65 100
|
jca |
|- ( ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) -> ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) ) |
102 |
59 101
|
impbii |
|- ( ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) <-> ( x : A --> 2o /\ y = ( `' x " { 1o } ) ) ) |
103 |
11 102
|
bitr4di |
|- ( A e. V -> ( ( x e. ( 2o ^m A ) /\ y = ( `' x " { 1o } ) ) <-> ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) ) ) |
104 |
|
velpw |
|- ( y e. ~P A <-> y C_ A ) |
105 |
104
|
anbi1i |
|- ( ( y e. ~P A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) <-> ( y C_ A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) ) |
106 |
103 105
|
bitr4di |
|- ( A e. V -> ( ( x e. ( 2o ^m A ) /\ y = ( `' x " { 1o } ) ) <-> ( y e. ~P A /\ x = ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) ) ) |
107 |
1 5 7 106
|
f1ocnvd |
|- ( A e. V -> ( F : ( 2o ^m A ) -1-1-onto-> ~P A /\ `' F = ( y e. ~P A |-> ( z e. A |-> if ( z e. y , 1o , (/) ) ) ) ) ) |