| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwcfsdom.1 |  |-  H = ( y e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` y ) ) ) | 
						
							| 2 |  | onzsl |  |-  ( A e. On <-> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) | 
						
							| 3 | 2 | biimpi |  |-  ( A e. On -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) | 
						
							| 4 |  | cfom |  |-  ( cf ` _om ) = _om | 
						
							| 5 |  | aleph0 |  |-  ( aleph ` (/) ) = _om | 
						
							| 6 | 5 | fveq2i |  |-  ( cf ` ( aleph ` (/) ) ) = ( cf ` _om ) | 
						
							| 7 | 4 6 5 | 3eqtr4i |  |-  ( cf ` ( aleph ` (/) ) ) = ( aleph ` (/) ) | 
						
							| 8 |  | 2fveq3 |  |-  ( A = (/) -> ( cf ` ( aleph ` A ) ) = ( cf ` ( aleph ` (/) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( A = (/) -> ( aleph ` A ) = ( aleph ` (/) ) ) | 
						
							| 10 | 7 8 9 | 3eqtr4a |  |-  ( A = (/) -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) | 
						
							| 11 |  | fvex |  |-  ( aleph ` A ) e. _V | 
						
							| 12 | 11 | canth2 |  |-  ( aleph ` A ) ~< ~P ( aleph ` A ) | 
						
							| 13 | 11 | pw2en |  |-  ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) | 
						
							| 14 |  | sdomentr |  |-  ( ( ( aleph ` A ) ~< ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) ) | 
						
							| 15 | 12 13 14 | mp2an |  |-  ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) | 
						
							| 16 |  | alephon |  |-  ( aleph ` A ) e. On | 
						
							| 17 |  | alephgeom |  |-  ( A e. On <-> _om C_ ( aleph ` A ) ) | 
						
							| 18 |  | omelon |  |-  _om e. On | 
						
							| 19 |  | 2onn |  |-  2o e. _om | 
						
							| 20 |  | onelss |  |-  ( _om e. On -> ( 2o e. _om -> 2o C_ _om ) ) | 
						
							| 21 | 18 19 20 | mp2 |  |-  2o C_ _om | 
						
							| 22 |  | sstr |  |-  ( ( 2o C_ _om /\ _om C_ ( aleph ` A ) ) -> 2o C_ ( aleph ` A ) ) | 
						
							| 23 | 21 22 | mpan |  |-  ( _om C_ ( aleph ` A ) -> 2o C_ ( aleph ` A ) ) | 
						
							| 24 | 17 23 | sylbi |  |-  ( A e. On -> 2o C_ ( aleph ` A ) ) | 
						
							| 25 |  | ssdomg |  |-  ( ( aleph ` A ) e. On -> ( 2o C_ ( aleph ` A ) -> 2o ~<_ ( aleph ` A ) ) ) | 
						
							| 26 | 16 24 25 | mpsyl |  |-  ( A e. On -> 2o ~<_ ( aleph ` A ) ) | 
						
							| 27 |  | mapdom1 |  |-  ( 2o ~<_ ( aleph ` A ) -> ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( A e. On -> ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) | 
						
							| 29 |  | sdomdomtr |  |-  ( ( ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) /\ ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) | 
						
							| 30 | 15 28 29 | sylancr |  |-  ( A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) | 
						
							| 31 |  | oveq2 |  |-  ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = ( ( aleph ` A ) ^m ( aleph ` A ) ) ) | 
						
							| 32 | 31 | breq2d |  |-  ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) <-> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) ) | 
						
							| 33 | 30 32 | syl5ibrcom |  |-  ( A e. On -> ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) | 
						
							| 34 | 10 33 | syl5 |  |-  ( A e. On -> ( A = (/) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) | 
						
							| 35 |  | alephreg |  |-  ( cf ` ( aleph ` suc x ) ) = ( aleph ` suc x ) | 
						
							| 36 |  | 2fveq3 |  |-  ( A = suc x -> ( cf ` ( aleph ` A ) ) = ( cf ` ( aleph ` suc x ) ) ) | 
						
							| 37 |  | fveq2 |  |-  ( A = suc x -> ( aleph ` A ) = ( aleph ` suc x ) ) | 
						
							| 38 | 35 36 37 | 3eqtr4a |  |-  ( A = suc x -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) | 
						
							| 39 | 38 | rexlimivw |  |-  ( E. x e. On A = suc x -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) | 
						
							| 40 | 39 33 | syl5 |  |-  ( A e. On -> ( E. x e. On A = suc x -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) | 
						
							| 41 |  | limelon |  |-  ( ( A e. _V /\ Lim A ) -> A e. On ) | 
						
							| 42 |  | ffn |  |-  ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> f Fn ( cf ` ( aleph ` A ) ) ) | 
						
							| 43 |  | fnrnfv |  |-  ( f Fn ( cf ` ( aleph ` A ) ) -> ran f = { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) | 
						
							| 44 | 43 | unieqd |  |-  ( f Fn ( cf ` ( aleph ` A ) ) -> U. ran f = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) | 
						
							| 45 | 42 44 | syl |  |-  ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U. ran f = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) | 
						
							| 46 |  | fvex |  |-  ( f ` x ) e. _V | 
						
							| 47 | 46 | dfiun2 |  |-  U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } | 
						
							| 48 | 45 47 | eqtr4di |  |-  ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U. ran f = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ) | 
						
							| 49 | 48 | ad2antrl |  |-  ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U. ran f = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ) | 
						
							| 50 |  | fnfvelrn |  |-  ( ( f Fn ( cf ` ( aleph ` A ) ) /\ w e. ( cf ` ( aleph ` A ) ) ) -> ( f ` w ) e. ran f ) | 
						
							| 51 | 42 50 | sylan |  |-  ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ w e. ( cf ` ( aleph ` A ) ) ) -> ( f ` w ) e. ran f ) | 
						
							| 52 |  | sseq2 |  |-  ( y = ( f ` w ) -> ( z C_ y <-> z C_ ( f ` w ) ) ) | 
						
							| 53 | 52 | rspcev |  |-  ( ( ( f ` w ) e. ran f /\ z C_ ( f ` w ) ) -> E. y e. ran f z C_ y ) | 
						
							| 54 | 51 53 | sylan |  |-  ( ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ w e. ( cf ` ( aleph ` A ) ) ) /\ z C_ ( f ` w ) ) -> E. y e. ran f z C_ y ) | 
						
							| 55 | 54 | rexlimdva2 |  |-  ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) -> E. y e. ran f z C_ y ) ) | 
						
							| 56 | 55 | ralimdv |  |-  ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) | 
						
							| 58 | 57 | adantl |  |-  ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) | 
						
							| 59 |  | alephislim |  |-  ( A e. On <-> Lim ( aleph ` A ) ) | 
						
							| 60 | 59 | biimpi |  |-  ( A e. On -> Lim ( aleph ` A ) ) | 
						
							| 61 |  | frn |  |-  ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ran f C_ ( aleph ` A ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ran f C_ ( aleph ` A ) ) | 
						
							| 63 |  | coflim |  |-  ( ( Lim ( aleph ` A ) /\ ran f C_ ( aleph ` A ) ) -> ( U. ran f = ( aleph ` A ) <-> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) | 
						
							| 64 | 60 62 63 | syl2an |  |-  ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( U. ran f = ( aleph ` A ) <-> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) | 
						
							| 65 | 58 64 | mpbird |  |-  ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U. ran f = ( aleph ` A ) ) | 
						
							| 66 | 49 65 | eqtr3d |  |-  ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = ( aleph ` A ) ) | 
						
							| 67 |  | ffvelcdm |  |-  ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) e. ( aleph ` A ) ) | 
						
							| 68 | 16 | oneli |  |-  ( ( f ` x ) e. ( aleph ` A ) -> ( f ` x ) e. On ) | 
						
							| 69 |  | harcard |  |-  ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) | 
						
							| 70 |  | iscard |  |-  ( ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) <-> ( ( har ` ( f ` x ) ) e. On /\ A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) ) ) | 
						
							| 71 | 70 | simprbi |  |-  ( ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) -> A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) ) | 
						
							| 72 | 69 71 | ax-mp |  |-  A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) | 
						
							| 73 |  | domrefg |  |-  ( ( f ` x ) e. _V -> ( f ` x ) ~<_ ( f ` x ) ) | 
						
							| 74 | 46 73 | ax-mp |  |-  ( f ` x ) ~<_ ( f ` x ) | 
						
							| 75 |  | elharval |  |-  ( ( f ` x ) e. ( har ` ( f ` x ) ) <-> ( ( f ` x ) e. On /\ ( f ` x ) ~<_ ( f ` x ) ) ) | 
						
							| 76 | 75 | biimpri |  |-  ( ( ( f ` x ) e. On /\ ( f ` x ) ~<_ ( f ` x ) ) -> ( f ` x ) e. ( har ` ( f ` x ) ) ) | 
						
							| 77 | 74 76 | mpan2 |  |-  ( ( f ` x ) e. On -> ( f ` x ) e. ( har ` ( f ` x ) ) ) | 
						
							| 78 |  | breq1 |  |-  ( y = ( f ` x ) -> ( y ~< ( har ` ( f ` x ) ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) | 
						
							| 79 | 78 | rspccv |  |-  ( A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) -> ( ( f ` x ) e. ( har ` ( f ` x ) ) -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) | 
						
							| 80 | 72 77 79 | mpsyl |  |-  ( ( f ` x ) e. On -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) | 
						
							| 81 | 67 68 80 | 3syl |  |-  ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) | 
						
							| 82 |  | harcl |  |-  ( har ` ( f ` x ) ) e. On | 
						
							| 83 |  | 2fveq3 |  |-  ( y = x -> ( har ` ( f ` y ) ) = ( har ` ( f ` x ) ) ) | 
						
							| 84 | 83 1 | fvmptg |  |-  ( ( x e. ( cf ` ( aleph ` A ) ) /\ ( har ` ( f ` x ) ) e. On ) -> ( H ` x ) = ( har ` ( f ` x ) ) ) | 
						
							| 85 | 82 84 | mpan2 |  |-  ( x e. ( cf ` ( aleph ` A ) ) -> ( H ` x ) = ( har ` ( f ` x ) ) ) | 
						
							| 86 | 85 | breq2d |  |-  ( x e. ( cf ` ( aleph ` A ) ) -> ( ( f ` x ) ~< ( H ` x ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) | 
						
							| 87 | 86 | adantl |  |-  ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( ( f ` x ) ~< ( H ` x ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) | 
						
							| 88 | 81 87 | mpbird |  |-  ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) ~< ( H ` x ) ) | 
						
							| 89 | 88 | ralrimiva |  |-  ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> A. x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< ( H ` x ) ) | 
						
							| 90 |  | fvex |  |-  ( cf ` ( aleph ` A ) ) e. _V | 
						
							| 91 |  | eqid |  |-  U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) | 
						
							| 92 |  | eqid |  |-  X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) = X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) | 
						
							| 93 | 90 91 92 | konigth |  |-  ( A. x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< ( H ` x ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) | 
						
							| 94 | 89 93 | syl |  |-  ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) | 
						
							| 95 | 94 | ad2antrl |  |-  ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) | 
						
							| 96 | 66 95 | eqbrtrrd |  |-  ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) | 
						
							| 97 | 41 96 | sylan |  |-  ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) | 
						
							| 98 |  | ovex |  |-  ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) e. _V | 
						
							| 99 | 67 | ex |  |-  ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( x e. ( cf ` ( aleph ` A ) ) -> ( f ` x ) e. ( aleph ` A ) ) ) | 
						
							| 100 |  | alephlim |  |-  ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) = U_ y e. A ( aleph ` y ) ) | 
						
							| 101 | 100 | eleq2d |  |-  ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. ( aleph ` A ) <-> ( f ` x ) e. U_ y e. A ( aleph ` y ) ) ) | 
						
							| 102 |  | eliun |  |-  ( ( f ` x ) e. U_ y e. A ( aleph ` y ) <-> E. y e. A ( f ` x ) e. ( aleph ` y ) ) | 
						
							| 103 |  | alephcard |  |-  ( card ` ( aleph ` y ) ) = ( aleph ` y ) | 
						
							| 104 | 103 | eleq2i |  |-  ( ( f ` x ) e. ( card ` ( aleph ` y ) ) <-> ( f ` x ) e. ( aleph ` y ) ) | 
						
							| 105 |  | cardsdomelir |  |-  ( ( f ` x ) e. ( card ` ( aleph ` y ) ) -> ( f ` x ) ~< ( aleph ` y ) ) | 
						
							| 106 | 104 105 | sylbir |  |-  ( ( f ` x ) e. ( aleph ` y ) -> ( f ` x ) ~< ( aleph ` y ) ) | 
						
							| 107 |  | elharval |  |-  ( ( aleph ` y ) e. ( har ` ( f ` x ) ) <-> ( ( aleph ` y ) e. On /\ ( aleph ` y ) ~<_ ( f ` x ) ) ) | 
						
							| 108 | 107 | simprbi |  |-  ( ( aleph ` y ) e. ( har ` ( f ` x ) ) -> ( aleph ` y ) ~<_ ( f ` x ) ) | 
						
							| 109 |  | domnsym |  |-  ( ( aleph ` y ) ~<_ ( f ` x ) -> -. ( f ` x ) ~< ( aleph ` y ) ) | 
						
							| 110 | 108 109 | syl |  |-  ( ( aleph ` y ) e. ( har ` ( f ` x ) ) -> -. ( f ` x ) ~< ( aleph ` y ) ) | 
						
							| 111 | 110 | con2i |  |-  ( ( f ` x ) ~< ( aleph ` y ) -> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) | 
						
							| 112 |  | alephon |  |-  ( aleph ` y ) e. On | 
						
							| 113 |  | ontri1 |  |-  ( ( ( har ` ( f ` x ) ) e. On /\ ( aleph ` y ) e. On ) -> ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) <-> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) ) | 
						
							| 114 | 82 112 113 | mp2an |  |-  ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) <-> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) | 
						
							| 115 | 111 114 | sylibr |  |-  ( ( f ` x ) ~< ( aleph ` y ) -> ( har ` ( f ` x ) ) C_ ( aleph ` y ) ) | 
						
							| 116 | 106 115 | syl |  |-  ( ( f ` x ) e. ( aleph ` y ) -> ( har ` ( f ` x ) ) C_ ( aleph ` y ) ) | 
						
							| 117 |  | alephord2i |  |-  ( A e. On -> ( y e. A -> ( aleph ` y ) e. ( aleph ` A ) ) ) | 
						
							| 118 | 117 | imp |  |-  ( ( A e. On /\ y e. A ) -> ( aleph ` y ) e. ( aleph ` A ) ) | 
						
							| 119 |  | ontr2 |  |-  ( ( ( har ` ( f ` x ) ) e. On /\ ( aleph ` A ) e. On ) -> ( ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) | 
						
							| 120 | 82 16 119 | mp2an |  |-  ( ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) | 
						
							| 121 | 116 118 120 | syl2anr |  |-  ( ( ( A e. On /\ y e. A ) /\ ( f ` x ) e. ( aleph ` y ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) | 
						
							| 122 | 121 | rexlimdva2 |  |-  ( A e. On -> ( E. y e. A ( f ` x ) e. ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) | 
						
							| 123 | 102 122 | biimtrid |  |-  ( A e. On -> ( ( f ` x ) e. U_ y e. A ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) | 
						
							| 124 | 41 123 | syl |  |-  ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. U_ y e. A ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) | 
						
							| 125 | 101 124 | sylbid |  |-  ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. ( aleph ` A ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) | 
						
							| 126 | 99 125 | sylan9r |  |-  ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> ( x e. ( cf ` ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) | 
						
							| 127 | 126 | imp |  |-  ( ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) | 
						
							| 128 | 83 | cbvmptv |  |-  ( y e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` y ) ) ) = ( x e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` x ) ) ) | 
						
							| 129 | 1 128 | eqtri |  |-  H = ( x e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` x ) ) ) | 
						
							| 130 | 127 129 | fmptd |  |-  ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) | 
						
							| 131 |  | ffvelcdm |  |-  ( ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( H ` x ) e. ( aleph ` A ) ) | 
						
							| 132 |  | onelss |  |-  ( ( aleph ` A ) e. On -> ( ( H ` x ) e. ( aleph ` A ) -> ( H ` x ) C_ ( aleph ` A ) ) ) | 
						
							| 133 | 16 131 132 | mpsyl |  |-  ( ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( H ` x ) C_ ( aleph ` A ) ) | 
						
							| 134 | 133 | ralrimiva |  |-  ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) ) | 
						
							| 135 |  | ss2ixp |  |-  ( A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ X_ x e. ( cf ` ( aleph ` A ) ) ( aleph ` A ) ) | 
						
							| 136 | 90 11 | ixpconst |  |-  X_ x e. ( cf ` ( aleph ` A ) ) ( aleph ` A ) = ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) | 
						
							| 137 | 135 136 | sseqtrdi |  |-  ( A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 138 | 130 134 137 | 3syl |  |-  ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 139 |  | ssdomg |  |-  ( ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) e. _V -> ( X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) | 
						
							| 140 | 98 138 139 | mpsyl |  |-  ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 141 | 140 | adantrr |  |-  ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 142 |  | sdomdomtr |  |-  ( ( ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) /\ X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 143 | 97 141 142 | syl2anc |  |-  ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 144 | 143 | expcom |  |-  ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) | 
						
							| 145 | 144 | 3adant2 |  |-  ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) | 
						
							| 146 |  | cfsmo |  |-  ( ( aleph ` A ) e. On -> E. f ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) | 
						
							| 147 | 16 146 | ax-mp |  |-  E. f ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) | 
						
							| 148 | 145 147 | exlimiiv |  |-  ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 149 | 148 | a1i |  |-  ( A e. On -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) | 
						
							| 150 | 34 40 149 | 3jaod |  |-  ( A e. On -> ( ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) | 
						
							| 151 | 3 150 | mpd |  |-  ( A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 152 |  | alephfnon |  |-  aleph Fn On | 
						
							| 153 | 152 | fndmi |  |-  dom aleph = On | 
						
							| 154 | 153 | eleq2i |  |-  ( A e. dom aleph <-> A e. On ) | 
						
							| 155 |  | ndmfv |  |-  ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) | 
						
							| 156 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 157 |  | 1oex |  |-  1o e. _V | 
						
							| 158 | 157 | 0sdom |  |-  ( (/) ~< 1o <-> 1o =/= (/) ) | 
						
							| 159 | 156 158 | mpbir |  |-  (/) ~< 1o | 
						
							| 160 |  | id |  |-  ( ( aleph ` A ) = (/) -> ( aleph ` A ) = (/) ) | 
						
							| 161 |  | fveq2 |  |-  ( ( aleph ` A ) = (/) -> ( cf ` ( aleph ` A ) ) = ( cf ` (/) ) ) | 
						
							| 162 |  | cf0 |  |-  ( cf ` (/) ) = (/) | 
						
							| 163 | 161 162 | eqtrdi |  |-  ( ( aleph ` A ) = (/) -> ( cf ` ( aleph ` A ) ) = (/) ) | 
						
							| 164 | 160 163 | oveq12d |  |-  ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = ( (/) ^m (/) ) ) | 
						
							| 165 |  | 0ex |  |-  (/) e. _V | 
						
							| 166 |  | map0e |  |-  ( (/) e. _V -> ( (/) ^m (/) ) = 1o ) | 
						
							| 167 | 165 166 | ax-mp |  |-  ( (/) ^m (/) ) = 1o | 
						
							| 168 | 164 167 | eqtrdi |  |-  ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = 1o ) | 
						
							| 169 | 160 168 | breq12d |  |-  ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) <-> (/) ~< 1o ) ) | 
						
							| 170 | 159 169 | mpbiri |  |-  ( ( aleph ` A ) = (/) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 171 | 155 170 | syl |  |-  ( -. A e. dom aleph -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 172 | 154 171 | sylnbir |  |-  ( -. A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) | 
						
							| 173 | 151 172 | pm2.61i |  |-  ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) |