Step |
Hyp |
Ref |
Expression |
1 |
|
pwcfsdom.1 |
|- H = ( y e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` y ) ) ) |
2 |
|
onzsl |
|- ( A e. On <-> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
3 |
2
|
biimpi |
|- ( A e. On -> ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) ) |
4 |
|
cfom |
|- ( cf ` _om ) = _om |
5 |
|
aleph0 |
|- ( aleph ` (/) ) = _om |
6 |
5
|
fveq2i |
|- ( cf ` ( aleph ` (/) ) ) = ( cf ` _om ) |
7 |
4 6 5
|
3eqtr4i |
|- ( cf ` ( aleph ` (/) ) ) = ( aleph ` (/) ) |
8 |
|
2fveq3 |
|- ( A = (/) -> ( cf ` ( aleph ` A ) ) = ( cf ` ( aleph ` (/) ) ) ) |
9 |
|
fveq2 |
|- ( A = (/) -> ( aleph ` A ) = ( aleph ` (/) ) ) |
10 |
7 8 9
|
3eqtr4a |
|- ( A = (/) -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) |
11 |
|
fvex |
|- ( aleph ` A ) e. _V |
12 |
11
|
canth2 |
|- ( aleph ` A ) ~< ~P ( aleph ` A ) |
13 |
11
|
pw2en |
|- ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) |
14 |
|
sdomentr |
|- ( ( ( aleph ` A ) ~< ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~~ ( 2o ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) ) |
15 |
12 13 14
|
mp2an |
|- ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) |
16 |
|
alephon |
|- ( aleph ` A ) e. On |
17 |
|
alephgeom |
|- ( A e. On <-> _om C_ ( aleph ` A ) ) |
18 |
|
omelon |
|- _om e. On |
19 |
|
2onn |
|- 2o e. _om |
20 |
|
onelss |
|- ( _om e. On -> ( 2o e. _om -> 2o C_ _om ) ) |
21 |
18 19 20
|
mp2 |
|- 2o C_ _om |
22 |
|
sstr |
|- ( ( 2o C_ _om /\ _om C_ ( aleph ` A ) ) -> 2o C_ ( aleph ` A ) ) |
23 |
21 22
|
mpan |
|- ( _om C_ ( aleph ` A ) -> 2o C_ ( aleph ` A ) ) |
24 |
17 23
|
sylbi |
|- ( A e. On -> 2o C_ ( aleph ` A ) ) |
25 |
|
ssdomg |
|- ( ( aleph ` A ) e. On -> ( 2o C_ ( aleph ` A ) -> 2o ~<_ ( aleph ` A ) ) ) |
26 |
16 24 25
|
mpsyl |
|- ( A e. On -> 2o ~<_ ( aleph ` A ) ) |
27 |
|
mapdom1 |
|- ( 2o ~<_ ( aleph ` A ) -> ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
28 |
26 27
|
syl |
|- ( A e. On -> ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
29 |
|
sdomdomtr |
|- ( ( ( aleph ` A ) ~< ( 2o ^m ( aleph ` A ) ) /\ ( 2o ^m ( aleph ` A ) ) ~<_ ( ( aleph ` A ) ^m ( aleph ` A ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
30 |
15 28 29
|
sylancr |
|- ( A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
31 |
|
oveq2 |
|- ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = ( ( aleph ` A ) ^m ( aleph ` A ) ) ) |
32 |
31
|
breq2d |
|- ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) <-> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( aleph ` A ) ) ) ) |
33 |
30 32
|
syl5ibrcom |
|- ( A e. On -> ( ( cf ` ( aleph ` A ) ) = ( aleph ` A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
34 |
10 33
|
syl5 |
|- ( A e. On -> ( A = (/) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
35 |
|
alephreg |
|- ( cf ` ( aleph ` suc x ) ) = ( aleph ` suc x ) |
36 |
|
2fveq3 |
|- ( A = suc x -> ( cf ` ( aleph ` A ) ) = ( cf ` ( aleph ` suc x ) ) ) |
37 |
|
fveq2 |
|- ( A = suc x -> ( aleph ` A ) = ( aleph ` suc x ) ) |
38 |
35 36 37
|
3eqtr4a |
|- ( A = suc x -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) |
39 |
38
|
rexlimivw |
|- ( E. x e. On A = suc x -> ( cf ` ( aleph ` A ) ) = ( aleph ` A ) ) |
40 |
39 33
|
syl5 |
|- ( A e. On -> ( E. x e. On A = suc x -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
41 |
|
cfsmo |
|- ( ( aleph ` A ) e. On -> E. f ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) |
42 |
|
limelon |
|- ( ( A e. _V /\ Lim A ) -> A e. On ) |
43 |
|
ffn |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> f Fn ( cf ` ( aleph ` A ) ) ) |
44 |
|
fnrnfv |
|- ( f Fn ( cf ` ( aleph ` A ) ) -> ran f = { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) |
45 |
44
|
unieqd |
|- ( f Fn ( cf ` ( aleph ` A ) ) -> U. ran f = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) |
46 |
43 45
|
syl |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U. ran f = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } ) |
47 |
|
fvex |
|- ( f ` x ) e. _V |
48 |
47
|
dfiun2 |
|- U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = U. { y | E. x e. ( cf ` ( aleph ` A ) ) y = ( f ` x ) } |
49 |
46 48
|
eqtr4di |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U. ran f = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ) |
50 |
49
|
ad2antrl |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U. ran f = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ) |
51 |
|
fnfvelrn |
|- ( ( f Fn ( cf ` ( aleph ` A ) ) /\ w e. ( cf ` ( aleph ` A ) ) ) -> ( f ` w ) e. ran f ) |
52 |
43 51
|
sylan |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ w e. ( cf ` ( aleph ` A ) ) ) -> ( f ` w ) e. ran f ) |
53 |
|
sseq2 |
|- ( y = ( f ` w ) -> ( z C_ y <-> z C_ ( f ` w ) ) ) |
54 |
53
|
rspcev |
|- ( ( ( f ` w ) e. ran f /\ z C_ ( f ` w ) ) -> E. y e. ran f z C_ y ) |
55 |
52 54
|
sylan |
|- ( ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ w e. ( cf ` ( aleph ` A ) ) ) /\ z C_ ( f ` w ) ) -> E. y e. ran f z C_ y ) |
56 |
55
|
rexlimdva2 |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) -> E. y e. ran f z C_ y ) ) |
57 |
56
|
ralimdv |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) |
58 |
57
|
imp |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) |
59 |
58
|
adantl |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) |
60 |
|
alephislim |
|- ( A e. On <-> Lim ( aleph ` A ) ) |
61 |
60
|
biimpi |
|- ( A e. On -> Lim ( aleph ` A ) ) |
62 |
|
frn |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ran f C_ ( aleph ` A ) ) |
63 |
62
|
adantr |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ran f C_ ( aleph ` A ) ) |
64 |
|
coflim |
|- ( ( Lim ( aleph ` A ) /\ ran f C_ ( aleph ` A ) ) -> ( U. ran f = ( aleph ` A ) <-> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) |
65 |
61 63 64
|
syl2an |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( U. ran f = ( aleph ` A ) <-> A. z e. ( aleph ` A ) E. y e. ran f z C_ y ) ) |
66 |
59 65
|
mpbird |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U. ran f = ( aleph ` A ) ) |
67 |
50 66
|
eqtr3d |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = ( aleph ` A ) ) |
68 |
|
ffvelrn |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) e. ( aleph ` A ) ) |
69 |
16
|
oneli |
|- ( ( f ` x ) e. ( aleph ` A ) -> ( f ` x ) e. On ) |
70 |
|
harcard |
|- ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) |
71 |
|
iscard |
|- ( ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) <-> ( ( har ` ( f ` x ) ) e. On /\ A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) ) ) |
72 |
71
|
simprbi |
|- ( ( card ` ( har ` ( f ` x ) ) ) = ( har ` ( f ` x ) ) -> A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) ) |
73 |
70 72
|
ax-mp |
|- A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) |
74 |
|
domrefg |
|- ( ( f ` x ) e. _V -> ( f ` x ) ~<_ ( f ` x ) ) |
75 |
47 74
|
ax-mp |
|- ( f ` x ) ~<_ ( f ` x ) |
76 |
|
elharval |
|- ( ( f ` x ) e. ( har ` ( f ` x ) ) <-> ( ( f ` x ) e. On /\ ( f ` x ) ~<_ ( f ` x ) ) ) |
77 |
76
|
biimpri |
|- ( ( ( f ` x ) e. On /\ ( f ` x ) ~<_ ( f ` x ) ) -> ( f ` x ) e. ( har ` ( f ` x ) ) ) |
78 |
75 77
|
mpan2 |
|- ( ( f ` x ) e. On -> ( f ` x ) e. ( har ` ( f ` x ) ) ) |
79 |
|
breq1 |
|- ( y = ( f ` x ) -> ( y ~< ( har ` ( f ` x ) ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
80 |
79
|
rspccv |
|- ( A. y e. ( har ` ( f ` x ) ) y ~< ( har ` ( f ` x ) ) -> ( ( f ` x ) e. ( har ` ( f ` x ) ) -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
81 |
73 78 80
|
mpsyl |
|- ( ( f ` x ) e. On -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) |
82 |
68 69 81
|
3syl |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) ~< ( har ` ( f ` x ) ) ) |
83 |
|
harcl |
|- ( har ` ( f ` x ) ) e. On |
84 |
|
2fveq3 |
|- ( y = x -> ( har ` ( f ` y ) ) = ( har ` ( f ` x ) ) ) |
85 |
84 1
|
fvmptg |
|- ( ( x e. ( cf ` ( aleph ` A ) ) /\ ( har ` ( f ` x ) ) e. On ) -> ( H ` x ) = ( har ` ( f ` x ) ) ) |
86 |
83 85
|
mpan2 |
|- ( x e. ( cf ` ( aleph ` A ) ) -> ( H ` x ) = ( har ` ( f ` x ) ) ) |
87 |
86
|
breq2d |
|- ( x e. ( cf ` ( aleph ` A ) ) -> ( ( f ` x ) ~< ( H ` x ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
88 |
87
|
adantl |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( ( f ` x ) ~< ( H ` x ) <-> ( f ` x ) ~< ( har ` ( f ` x ) ) ) ) |
89 |
82 88
|
mpbird |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( f ` x ) ~< ( H ` x ) ) |
90 |
89
|
ralrimiva |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> A. x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< ( H ` x ) ) |
91 |
|
fvex |
|- ( cf ` ( aleph ` A ) ) e. _V |
92 |
|
eqid |
|- U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) = U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) |
93 |
|
eqid |
|- X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) = X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) |
94 |
91 92 93
|
konigth |
|- ( A. x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< ( H ` x ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
95 |
90 94
|
syl |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
96 |
95
|
ad2antrl |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> U_ x e. ( cf ` ( aleph ` A ) ) ( f ` x ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
97 |
67 96
|
eqbrtrrd |
|- ( ( A e. On /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
98 |
42 97
|
sylan |
|- ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ) |
99 |
|
ovex |
|- ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) e. _V |
100 |
68
|
ex |
|- ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> ( x e. ( cf ` ( aleph ` A ) ) -> ( f ` x ) e. ( aleph ` A ) ) ) |
101 |
|
alephlim |
|- ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) = U_ y e. A ( aleph ` y ) ) |
102 |
101
|
eleq2d |
|- ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. ( aleph ` A ) <-> ( f ` x ) e. U_ y e. A ( aleph ` y ) ) ) |
103 |
|
eliun |
|- ( ( f ` x ) e. U_ y e. A ( aleph ` y ) <-> E. y e. A ( f ` x ) e. ( aleph ` y ) ) |
104 |
|
alephcard |
|- ( card ` ( aleph ` y ) ) = ( aleph ` y ) |
105 |
104
|
eleq2i |
|- ( ( f ` x ) e. ( card ` ( aleph ` y ) ) <-> ( f ` x ) e. ( aleph ` y ) ) |
106 |
|
cardsdomelir |
|- ( ( f ` x ) e. ( card ` ( aleph ` y ) ) -> ( f ` x ) ~< ( aleph ` y ) ) |
107 |
105 106
|
sylbir |
|- ( ( f ` x ) e. ( aleph ` y ) -> ( f ` x ) ~< ( aleph ` y ) ) |
108 |
|
elharval |
|- ( ( aleph ` y ) e. ( har ` ( f ` x ) ) <-> ( ( aleph ` y ) e. On /\ ( aleph ` y ) ~<_ ( f ` x ) ) ) |
109 |
108
|
simprbi |
|- ( ( aleph ` y ) e. ( har ` ( f ` x ) ) -> ( aleph ` y ) ~<_ ( f ` x ) ) |
110 |
|
domnsym |
|- ( ( aleph ` y ) ~<_ ( f ` x ) -> -. ( f ` x ) ~< ( aleph ` y ) ) |
111 |
109 110
|
syl |
|- ( ( aleph ` y ) e. ( har ` ( f ` x ) ) -> -. ( f ` x ) ~< ( aleph ` y ) ) |
112 |
111
|
con2i |
|- ( ( f ` x ) ~< ( aleph ` y ) -> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) |
113 |
|
alephon |
|- ( aleph ` y ) e. On |
114 |
|
ontri1 |
|- ( ( ( har ` ( f ` x ) ) e. On /\ ( aleph ` y ) e. On ) -> ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) <-> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) ) |
115 |
83 113 114
|
mp2an |
|- ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) <-> -. ( aleph ` y ) e. ( har ` ( f ` x ) ) ) |
116 |
112 115
|
sylibr |
|- ( ( f ` x ) ~< ( aleph ` y ) -> ( har ` ( f ` x ) ) C_ ( aleph ` y ) ) |
117 |
107 116
|
syl |
|- ( ( f ` x ) e. ( aleph ` y ) -> ( har ` ( f ` x ) ) C_ ( aleph ` y ) ) |
118 |
|
alephord2i |
|- ( A e. On -> ( y e. A -> ( aleph ` y ) e. ( aleph ` A ) ) ) |
119 |
118
|
imp |
|- ( ( A e. On /\ y e. A ) -> ( aleph ` y ) e. ( aleph ` A ) ) |
120 |
|
ontr2 |
|- ( ( ( har ` ( f ` x ) ) e. On /\ ( aleph ` A ) e. On ) -> ( ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
121 |
83 16 120
|
mp2an |
|- ( ( ( har ` ( f ` x ) ) C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) |
122 |
117 119 121
|
syl2anr |
|- ( ( ( A e. On /\ y e. A ) /\ ( f ` x ) e. ( aleph ` y ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) |
123 |
122
|
rexlimdva2 |
|- ( A e. On -> ( E. y e. A ( f ` x ) e. ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
124 |
103 123
|
syl5bi |
|- ( A e. On -> ( ( f ` x ) e. U_ y e. A ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
125 |
42 124
|
syl |
|- ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. U_ y e. A ( aleph ` y ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
126 |
102 125
|
sylbid |
|- ( ( A e. _V /\ Lim A ) -> ( ( f ` x ) e. ( aleph ` A ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
127 |
100 126
|
sylan9r |
|- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> ( x e. ( cf ` ( aleph ` A ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) ) |
128 |
127
|
imp |
|- ( ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( har ` ( f ` x ) ) e. ( aleph ` A ) ) |
129 |
84
|
cbvmptv |
|- ( y e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` y ) ) ) = ( x e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` x ) ) ) |
130 |
1 129
|
eqtri |
|- H = ( x e. ( cf ` ( aleph ` A ) ) |-> ( har ` ( f ` x ) ) ) |
131 |
128 130
|
fmptd |
|- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) |
132 |
|
ffvelrn |
|- ( ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( H ` x ) e. ( aleph ` A ) ) |
133 |
|
onelss |
|- ( ( aleph ` A ) e. On -> ( ( H ` x ) e. ( aleph ` A ) -> ( H ` x ) C_ ( aleph ` A ) ) ) |
134 |
16 132 133
|
mpsyl |
|- ( ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ x e. ( cf ` ( aleph ` A ) ) ) -> ( H ` x ) C_ ( aleph ` A ) ) |
135 |
134
|
ralrimiva |
|- ( H : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) -> A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) ) |
136 |
|
ss2ixp |
|- ( A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ X_ x e. ( cf ` ( aleph ` A ) ) ( aleph ` A ) ) |
137 |
91 11
|
ixpconst |
|- X_ x e. ( cf ` ( aleph ` A ) ) ( aleph ` A ) = ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) |
138 |
136 137
|
sseqtrdi |
|- ( A. x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( aleph ` A ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
139 |
131 135 138
|
3syl |
|- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
140 |
|
ssdomg |
|- ( ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) e. _V -> ( X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) C_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
141 |
99 139 140
|
mpsyl |
|- ( ( ( A e. _V /\ Lim A ) /\ f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
142 |
141
|
adantrr |
|- ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
143 |
|
sdomdomtr |
|- ( ( ( aleph ` A ) ~< X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) /\ X_ x e. ( cf ` ( aleph ` A ) ) ( H ` x ) ~<_ ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
144 |
98 142 143
|
syl2anc |
|- ( ( ( A e. _V /\ Lim A ) /\ ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
145 |
144
|
expcom |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
146 |
145
|
3adant2 |
|- ( ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
147 |
146
|
exlimiv |
|- ( E. f ( f : ( cf ` ( aleph ` A ) ) --> ( aleph ` A ) /\ Smo f /\ A. z e. ( aleph ` A ) E. w e. ( cf ` ( aleph ` A ) ) z C_ ( f ` w ) ) -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
148 |
16 41 147
|
mp2b |
|- ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
149 |
148
|
a1i |
|- ( A e. On -> ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
150 |
34 40 149
|
3jaod |
|- ( A e. On -> ( ( A = (/) \/ E. x e. On A = suc x \/ ( A e. _V /\ Lim A ) ) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) ) |
151 |
3 150
|
mpd |
|- ( A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
152 |
|
alephfnon |
|- aleph Fn On |
153 |
152
|
fndmi |
|- dom aleph = On |
154 |
153
|
eleq2i |
|- ( A e. dom aleph <-> A e. On ) |
155 |
|
ndmfv |
|- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
156 |
|
1n0 |
|- 1o =/= (/) |
157 |
|
1oex |
|- 1o e. _V |
158 |
157
|
0sdom |
|- ( (/) ~< 1o <-> 1o =/= (/) ) |
159 |
156 158
|
mpbir |
|- (/) ~< 1o |
160 |
|
id |
|- ( ( aleph ` A ) = (/) -> ( aleph ` A ) = (/) ) |
161 |
|
fveq2 |
|- ( ( aleph ` A ) = (/) -> ( cf ` ( aleph ` A ) ) = ( cf ` (/) ) ) |
162 |
|
cf0 |
|- ( cf ` (/) ) = (/) |
163 |
161 162
|
eqtrdi |
|- ( ( aleph ` A ) = (/) -> ( cf ` ( aleph ` A ) ) = (/) ) |
164 |
160 163
|
oveq12d |
|- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = ( (/) ^m (/) ) ) |
165 |
|
0ex |
|- (/) e. _V |
166 |
|
map0e |
|- ( (/) e. _V -> ( (/) ^m (/) ) = 1o ) |
167 |
165 166
|
ax-mp |
|- ( (/) ^m (/) ) = 1o |
168 |
164 167
|
eqtrdi |
|- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) = 1o ) |
169 |
160 168
|
breq12d |
|- ( ( aleph ` A ) = (/) -> ( ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) <-> (/) ~< 1o ) ) |
170 |
159 169
|
mpbiri |
|- ( ( aleph ` A ) = (/) -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
171 |
155 170
|
syl |
|- ( -. A e. dom aleph -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
172 |
154 171
|
sylnbir |
|- ( -. A e. On -> ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) ) |
173 |
151 172
|
pm2.61i |
|- ( aleph ` A ) ~< ( ( aleph ` A ) ^m ( cf ` ( aleph ` A ) ) ) |