Step |
Hyp |
Ref |
Expression |
1 |
|
1on |
|- 1o e. On |
2 |
|
pwdjuen |
|- ( ( A e. V /\ 1o e. On ) -> ~P ( A |_| 1o ) ~~ ( ~P A X. ~P 1o ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. V -> ~P ( A |_| 1o ) ~~ ( ~P A X. ~P 1o ) ) |
4 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
5 |
|
1oex |
|- 1o e. _V |
6 |
5
|
pwex |
|- ~P 1o e. _V |
7 |
|
xpcomeng |
|- ( ( ~P A e. _V /\ ~P 1o e. _V ) -> ( ~P A X. ~P 1o ) ~~ ( ~P 1o X. ~P A ) ) |
8 |
4 6 7
|
sylancl |
|- ( A e. V -> ( ~P A X. ~P 1o ) ~~ ( ~P 1o X. ~P A ) ) |
9 |
|
entr |
|- ( ( ~P ( A |_| 1o ) ~~ ( ~P A X. ~P 1o ) /\ ( ~P A X. ~P 1o ) ~~ ( ~P 1o X. ~P A ) ) -> ~P ( A |_| 1o ) ~~ ( ~P 1o X. ~P A ) ) |
10 |
3 8 9
|
syl2anc |
|- ( A e. V -> ~P ( A |_| 1o ) ~~ ( ~P 1o X. ~P A ) ) |
11 |
|
pwpw0 |
|- ~P { (/) } = { (/) , { (/) } } |
12 |
|
df1o2 |
|- 1o = { (/) } |
13 |
12
|
pweqi |
|- ~P 1o = ~P { (/) } |
14 |
|
df2o2 |
|- 2o = { (/) , { (/) } } |
15 |
11 13 14
|
3eqtr4i |
|- ~P 1o = 2o |
16 |
15
|
xpeq1i |
|- ( ~P 1o X. ~P A ) = ( 2o X. ~P A ) |
17 |
|
xp2dju |
|- ( 2o X. ~P A ) = ( ~P A |_| ~P A ) |
18 |
16 17
|
eqtri |
|- ( ~P 1o X. ~P A ) = ( ~P A |_| ~P A ) |
19 |
10 18
|
breqtrdi |
|- ( A e. V -> ~P ( A |_| 1o ) ~~ ( ~P A |_| ~P A ) ) |
20 |
19
|
ensymd |
|- ( A e. V -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |