Step |
Hyp |
Ref |
Expression |
1 |
|
canthwdom |
|- -. ~P A ~<_* A |
2 |
|
0ex |
|- (/) e. _V |
3 |
|
reldom |
|- Rel ~<_ |
4 |
3
|
brrelex2i |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( A |_| B ) e. _V ) |
5 |
|
djuexb |
|- ( ( A e. _V /\ B e. _V ) <-> ( A |_| B ) e. _V ) |
6 |
4 5
|
sylibr |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( A e. _V /\ B e. _V ) ) |
7 |
6
|
simpld |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> A e. _V ) |
8 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
9 |
2 7 8
|
sylancr |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( { (/) } X. A ) ~~ A ) |
10 |
|
endom |
|- ( ( { (/) } X. A ) ~~ A -> ( { (/) } X. A ) ~<_ A ) |
11 |
|
domwdom |
|- ( ( { (/) } X. A ) ~<_ A -> ( { (/) } X. A ) ~<_* A ) |
12 |
|
wdomtr |
|- ( ( ~P A ~<_* ( { (/) } X. A ) /\ ( { (/) } X. A ) ~<_* A ) -> ~P A ~<_* A ) |
13 |
12
|
expcom |
|- ( ( { (/) } X. A ) ~<_* A -> ( ~P A ~<_* ( { (/) } X. A ) -> ~P A ~<_* A ) ) |
14 |
9 10 11 13
|
4syl |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P A ~<_* ( { (/) } X. A ) -> ~P A ~<_* A ) ) |
15 |
1 14
|
mtoi |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> -. ~P A ~<_* ( { (/) } X. A ) ) |
16 |
|
pwdjuen |
|- ( ( A e. _V /\ A e. _V ) -> ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) ) |
17 |
7 7 16
|
syl2anc |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) ) |
18 |
|
domen1 |
|- ( ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) -> ( ~P ( A |_| A ) ~<_ ( A |_| B ) <-> ( ~P A X. ~P A ) ~<_ ( A |_| B ) ) ) |
19 |
17 18
|
syl |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P ( A |_| A ) ~<_ ( A |_| B ) <-> ( ~P A X. ~P A ) ~<_ ( A |_| B ) ) ) |
20 |
19
|
ibi |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P A X. ~P A ) ~<_ ( A |_| B ) ) |
21 |
|
df-dju |
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
22 |
20 21
|
breqtrdi |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P A X. ~P A ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
23 |
|
unxpwdom |
|- ( ( ~P A X. ~P A ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) -> ( ~P A ~<_* ( { (/) } X. A ) \/ ~P A ~<_ ( { 1o } X. B ) ) ) |
24 |
22 23
|
syl |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P A ~<_* ( { (/) } X. A ) \/ ~P A ~<_ ( { 1o } X. B ) ) ) |
25 |
24
|
ord |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( -. ~P A ~<_* ( { (/) } X. A ) -> ~P A ~<_ ( { 1o } X. B ) ) ) |
26 |
15 25
|
mpd |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ~P A ~<_ ( { 1o } X. B ) ) |
27 |
|
1on |
|- 1o e. On |
28 |
6
|
simprd |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> B e. _V ) |
29 |
|
xpsnen2g |
|- ( ( 1o e. On /\ B e. _V ) -> ( { 1o } X. B ) ~~ B ) |
30 |
27 28 29
|
sylancr |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( { 1o } X. B ) ~~ B ) |
31 |
|
domentr |
|- ( ( ~P A ~<_ ( { 1o } X. B ) /\ ( { 1o } X. B ) ~~ B ) -> ~P A ~<_ B ) |
32 |
26 30 31
|
syl2anc |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ~P A ~<_ B ) |