Step |
Hyp |
Ref |
Expression |
1 |
|
djuex |
|- ( ( A e. V /\ B e. W ) -> ( A |_| B ) e. _V ) |
2 |
|
pw2eng |
|- ( ( A |_| B ) e. _V -> ~P ( A |_| B ) ~~ ( 2o ^m ( A |_| B ) ) ) |
3 |
1 2
|
syl |
|- ( ( A e. V /\ B e. W ) -> ~P ( A |_| B ) ~~ ( 2o ^m ( A |_| B ) ) ) |
4 |
|
2on |
|- 2o e. On |
5 |
|
mapdjuen |
|- ( ( 2o e. On /\ A e. V /\ B e. W ) -> ( 2o ^m ( A |_| B ) ) ~~ ( ( 2o ^m A ) X. ( 2o ^m B ) ) ) |
6 |
4 5
|
mp3an1 |
|- ( ( A e. V /\ B e. W ) -> ( 2o ^m ( A |_| B ) ) ~~ ( ( 2o ^m A ) X. ( 2o ^m B ) ) ) |
7 |
|
pw2eng |
|- ( A e. V -> ~P A ~~ ( 2o ^m A ) ) |
8 |
|
pw2eng |
|- ( B e. W -> ~P B ~~ ( 2o ^m B ) ) |
9 |
|
xpen |
|- ( ( ~P A ~~ ( 2o ^m A ) /\ ~P B ~~ ( 2o ^m B ) ) -> ( ~P A X. ~P B ) ~~ ( ( 2o ^m A ) X. ( 2o ^m B ) ) ) |
10 |
7 8 9
|
syl2an |
|- ( ( A e. V /\ B e. W ) -> ( ~P A X. ~P B ) ~~ ( ( 2o ^m A ) X. ( 2o ^m B ) ) ) |
11 |
|
enen2 |
|- ( ( ~P A X. ~P B ) ~~ ( ( 2o ^m A ) X. ( 2o ^m B ) ) -> ( ( 2o ^m ( A |_| B ) ) ~~ ( ~P A X. ~P B ) <-> ( 2o ^m ( A |_| B ) ) ~~ ( ( 2o ^m A ) X. ( 2o ^m B ) ) ) ) |
12 |
10 11
|
syl |
|- ( ( A e. V /\ B e. W ) -> ( ( 2o ^m ( A |_| B ) ) ~~ ( ~P A X. ~P B ) <-> ( 2o ^m ( A |_| B ) ) ~~ ( ( 2o ^m A ) X. ( 2o ^m B ) ) ) ) |
13 |
6 12
|
mpbird |
|- ( ( A e. V /\ B e. W ) -> ( 2o ^m ( A |_| B ) ) ~~ ( ~P A X. ~P B ) ) |
14 |
|
entr |
|- ( ( ~P ( A |_| B ) ~~ ( 2o ^m ( A |_| B ) ) /\ ( 2o ^m ( A |_| B ) ) ~~ ( ~P A X. ~P B ) ) -> ~P ( A |_| B ) ~~ ( ~P A X. ~P B ) ) |
15 |
3 13 14
|
syl2anc |
|- ( ( A e. V /\ B e. W ) -> ~P ( A |_| B ) ~~ ( ~P A X. ~P B ) ) |