Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
|- Rel ~<_ |
2 |
1
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
3 |
|
pwdju1 |
|- ( A e. _V -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
4 |
2 3
|
syl |
|- ( _om ~<_ A -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
5 |
|
infdju1 |
|- ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) |
6 |
|
pwen |
|- ( ( A |_| 1o ) ~~ A -> ~P ( A |_| 1o ) ~~ ~P A ) |
7 |
5 6
|
syl |
|- ( _om ~<_ A -> ~P ( A |_| 1o ) ~~ ~P A ) |
8 |
|
entr |
|- ( ( ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) /\ ~P ( A |_| 1o ) ~~ ~P A ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
9 |
4 7 8
|
syl2anc |
|- ( _om ~<_ A -> ( ~P A |_| ~P A ) ~~ ~P A ) |