| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwxpndom2 |  |-  ( _om ~<_ A -> -. ~P A ~<_ ( A |_| ( A X. A ) ) ) | 
						
							| 2 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 3 | 2 | xpeq1i |  |-  ( 1o X. A ) = ( { (/) } X. A ) | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 |  | reldom |  |-  Rel ~<_ | 
						
							| 6 | 5 | brrelex2i |  |-  ( _om ~<_ A -> A e. _V ) | 
						
							| 7 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 8 | 4 6 7 | sylancr |  |-  ( _om ~<_ A -> ( { (/) } X. A ) ~~ A ) | 
						
							| 9 | 3 8 | eqbrtrid |  |-  ( _om ~<_ A -> ( 1o X. A ) ~~ A ) | 
						
							| 10 | 9 | ensymd |  |-  ( _om ~<_ A -> A ~~ ( 1o X. A ) ) | 
						
							| 11 |  | omex |  |-  _om e. _V | 
						
							| 12 |  | ordom |  |-  Ord _om | 
						
							| 13 |  | 1onn |  |-  1o e. _om | 
						
							| 14 |  | ordelss |  |-  ( ( Ord _om /\ 1o e. _om ) -> 1o C_ _om ) | 
						
							| 15 | 12 13 14 | mp2an |  |-  1o C_ _om | 
						
							| 16 |  | ssdomg |  |-  ( _om e. _V -> ( 1o C_ _om -> 1o ~<_ _om ) ) | 
						
							| 17 | 11 15 16 | mp2 |  |-  1o ~<_ _om | 
						
							| 18 |  | domtr |  |-  ( ( 1o ~<_ _om /\ _om ~<_ A ) -> 1o ~<_ A ) | 
						
							| 19 | 17 18 | mpan |  |-  ( _om ~<_ A -> 1o ~<_ A ) | 
						
							| 20 |  | xpdom1g |  |-  ( ( A e. _V /\ 1o ~<_ A ) -> ( 1o X. A ) ~<_ ( A X. A ) ) | 
						
							| 21 | 6 19 20 | syl2anc |  |-  ( _om ~<_ A -> ( 1o X. A ) ~<_ ( A X. A ) ) | 
						
							| 22 |  | endomtr |  |-  ( ( A ~~ ( 1o X. A ) /\ ( 1o X. A ) ~<_ ( A X. A ) ) -> A ~<_ ( A X. A ) ) | 
						
							| 23 | 10 21 22 | syl2anc |  |-  ( _om ~<_ A -> A ~<_ ( A X. A ) ) | 
						
							| 24 |  | djudom2 |  |-  ( ( A ~<_ ( A X. A ) /\ A e. _V ) -> ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) ) | 
						
							| 25 | 23 6 24 | syl2anc |  |-  ( _om ~<_ A -> ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) ) | 
						
							| 26 |  | domtr |  |-  ( ( ~P A ~<_ ( A |_| A ) /\ ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) | 
						
							| 27 | 26 | expcom |  |-  ( ( A |_| A ) ~<_ ( A |_| ( A X. A ) ) -> ( ~P A ~<_ ( A |_| A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) | 
						
							| 28 | 25 27 | syl |  |-  ( _om ~<_ A -> ( ~P A ~<_ ( A |_| A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) | 
						
							| 29 | 1 28 | mtod |  |-  ( _om ~<_ A -> -. ~P A ~<_ ( A |_| A ) ) |