Metamath Proof Explorer


Theorem pwel

Description: Quantitative version of pwexg : the powerset of an element of a class is an element of the double powerclass of the union of that class. Exercise 10 of Enderton p. 26. (Contributed by NM, 13-Jan-2007) Remove use of ax-nul and ax-pr and shorten proof. (Revised by BJ, 13-Apr-2024)

Ref Expression
Assertion pwel
|- ( A e. B -> ~P A e. ~P ~P U. B )

Proof

Step Hyp Ref Expression
1 pwexg
 |-  ( A e. B -> ~P A e. _V )
2 elssuni
 |-  ( A e. B -> A C_ U. B )
3 2 sspwd
 |-  ( A e. B -> ~P A C_ ~P U. B )
4 1 3 elpwd
 |-  ( A e. B -> ~P A e. ~P ~P U. B )