Step |
Hyp |
Ref |
Expression |
1 |
|
relen |
|- Rel ~~ |
2 |
1
|
brrelex1i |
|- ( A ~~ B -> A e. _V ) |
3 |
|
pw2eng |
|- ( A e. _V -> ~P A ~~ ( 2o ^m A ) ) |
4 |
2 3
|
syl |
|- ( A ~~ B -> ~P A ~~ ( 2o ^m A ) ) |
5 |
|
2onn |
|- 2o e. _om |
6 |
5
|
elexi |
|- 2o e. _V |
7 |
6
|
enref |
|- 2o ~~ 2o |
8 |
|
mapen |
|- ( ( 2o ~~ 2o /\ A ~~ B ) -> ( 2o ^m A ) ~~ ( 2o ^m B ) ) |
9 |
7 8
|
mpan |
|- ( A ~~ B -> ( 2o ^m A ) ~~ ( 2o ^m B ) ) |
10 |
1
|
brrelex2i |
|- ( A ~~ B -> B e. _V ) |
11 |
|
pw2eng |
|- ( B e. _V -> ~P B ~~ ( 2o ^m B ) ) |
12 |
|
ensym |
|- ( ~P B ~~ ( 2o ^m B ) -> ( 2o ^m B ) ~~ ~P B ) |
13 |
10 11 12
|
3syl |
|- ( A ~~ B -> ( 2o ^m B ) ~~ ~P B ) |
14 |
|
entr |
|- ( ( ( 2o ^m A ) ~~ ( 2o ^m B ) /\ ( 2o ^m B ) ~~ ~P B ) -> ( 2o ^m A ) ~~ ~P B ) |
15 |
9 13 14
|
syl2anc |
|- ( A ~~ B -> ( 2o ^m A ) ~~ ~P B ) |
16 |
|
entr |
|- ( ( ~P A ~~ ( 2o ^m A ) /\ ( 2o ^m A ) ~~ ~P B ) -> ~P A ~~ ~P B ) |
17 |
4 15 16
|
syl2anc |
|- ( A ~~ B -> ~P A ~~ ~P B ) |