Description: The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwexb | |- ( A e. _V <-> ~P A e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | |- ( A e. _V -> ~P A e. _V ) |
|
| 2 | pwexr | |- ( ~P A e. _V -> A e. _V ) |
|
| 3 | 1 2 | impbii | |- ( A e. _V <-> ~P A e. _V ) |