Metamath Proof Explorer


Theorem pwexd

Description: Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis pwexd.1
|- ( ph -> A e. V )
Assertion pwexd
|- ( ph -> ~P A e. _V )

Proof

Step Hyp Ref Expression
1 pwexd.1
 |-  ( ph -> A e. V )
2 pwexg
 |-  ( A e. V -> ~P A e. _V )
3 1 2 syl
 |-  ( ph -> ~P A e. _V )