Description: Converse of the Axiom of Power Sets. Note that it does not require ax-pow . (Contributed by NM, 11-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | pwexr | |- ( ~P A e. V -> A e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw | |- U. ~P A = A |
|
2 | uniexg | |- ( ~P A e. V -> U. ~P A e. _V ) |
|
3 | 1 2 | eqeltrrid | |- ( ~P A e. V -> A e. _V ) |