Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
|- ( A e. Fin <-> E. m e. _om A ~~ m ) |
2 |
|
pweq |
|- ( m = (/) -> ~P m = ~P (/) ) |
3 |
2
|
eleq1d |
|- ( m = (/) -> ( ~P m e. Fin <-> ~P (/) e. Fin ) ) |
4 |
|
pweq |
|- ( m = k -> ~P m = ~P k ) |
5 |
4
|
eleq1d |
|- ( m = k -> ( ~P m e. Fin <-> ~P k e. Fin ) ) |
6 |
|
pweq |
|- ( m = suc k -> ~P m = ~P suc k ) |
7 |
|
df-suc |
|- suc k = ( k u. { k } ) |
8 |
7
|
pweqi |
|- ~P suc k = ~P ( k u. { k } ) |
9 |
6 8
|
eqtrdi |
|- ( m = suc k -> ~P m = ~P ( k u. { k } ) ) |
10 |
9
|
eleq1d |
|- ( m = suc k -> ( ~P m e. Fin <-> ~P ( k u. { k } ) e. Fin ) ) |
11 |
|
pw0 |
|- ~P (/) = { (/) } |
12 |
|
df1o2 |
|- 1o = { (/) } |
13 |
11 12
|
eqtr4i |
|- ~P (/) = 1o |
14 |
|
1onn |
|- 1o e. _om |
15 |
|
ssid |
|- 1o C_ 1o |
16 |
|
ssnnfi |
|- ( ( 1o e. _om /\ 1o C_ 1o ) -> 1o e. Fin ) |
17 |
14 15 16
|
mp2an |
|- 1o e. Fin |
18 |
13 17
|
eqeltri |
|- ~P (/) e. Fin |
19 |
|
eqid |
|- ( c e. ~P k |-> ( c u. { k } ) ) = ( c e. ~P k |-> ( c u. { k } ) ) |
20 |
19
|
pwfilem |
|- ( ~P k e. Fin -> ~P ( k u. { k } ) e. Fin ) |
21 |
20
|
a1i |
|- ( k e. _om -> ( ~P k e. Fin -> ~P ( k u. { k } ) e. Fin ) ) |
22 |
3 5 10 18 21
|
finds1 |
|- ( m e. _om -> ~P m e. Fin ) |
23 |
|
pwen |
|- ( A ~~ m -> ~P A ~~ ~P m ) |
24 |
|
enfii |
|- ( ( ~P m e. Fin /\ ~P A ~~ ~P m ) -> ~P A e. Fin ) |
25 |
22 23 24
|
syl2an |
|- ( ( m e. _om /\ A ~~ m ) -> ~P A e. Fin ) |
26 |
25
|
rexlimiva |
|- ( E. m e. _om A ~~ m -> ~P A e. Fin ) |
27 |
1 26
|
sylbi |
|- ( A e. Fin -> ~P A e. Fin ) |
28 |
|
pwexr |
|- ( ~P A e. Fin -> A e. _V ) |
29 |
|
canth2g |
|- ( A e. _V -> A ~< ~P A ) |
30 |
|
sdomdom |
|- ( A ~< ~P A -> A ~<_ ~P A ) |
31 |
28 29 30
|
3syl |
|- ( ~P A e. Fin -> A ~<_ ~P A ) |
32 |
|
domfi |
|- ( ( ~P A e. Fin /\ A ~<_ ~P A ) -> A e. Fin ) |
33 |
31 32
|
mpdan |
|- ( ~P A e. Fin -> A e. Fin ) |
34 |
27 33
|
impbii |
|- ( A e. Fin <-> ~P A e. Fin ) |