| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwfseqlem4.g |  |-  ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) | 
						
							| 2 |  | pwfseqlem4.x |  |-  ( ph -> X C_ A ) | 
						
							| 3 |  | pwfseqlem4.h |  |-  ( ph -> H : _om -1-1-onto-> X ) | 
						
							| 4 |  | pwfseqlem4.ps |  |-  ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) | 
						
							| 5 |  | pwfseqlem4.k |  |-  ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) | 
						
							| 6 |  | pwfseqlem4.d |  |-  D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) | 
						
							| 7 | 1 | adantr |  |-  ( ( ph /\ ps ) -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) | 
						
							| 8 |  | f1f |  |-  ( G : ~P A -1-1-> U_ n e. _om ( A ^m n ) -> G : ~P A --> U_ n e. _om ( A ^m n ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ph /\ ps ) -> G : ~P A --> U_ n e. _om ( A ^m n ) ) | 
						
							| 10 |  | ssrab2 |  |-  { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } C_ x | 
						
							| 11 |  | simprl1 |  |-  ( ( ph /\ ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) -> x C_ A ) | 
						
							| 12 | 4 11 | sylan2b |  |-  ( ( ph /\ ps ) -> x C_ A ) | 
						
							| 13 | 10 12 | sstrid |  |-  ( ( ph /\ ps ) -> { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } C_ A ) | 
						
							| 14 |  | vex |  |-  x e. _V | 
						
							| 15 | 14 | rabex |  |-  { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. _V | 
						
							| 16 | 15 | elpw |  |-  ( { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. ~P A <-> { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } C_ A ) | 
						
							| 17 | 13 16 | sylibr |  |-  ( ( ph /\ ps ) -> { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. ~P A ) | 
						
							| 18 | 9 17 | ffvelcdmd |  |-  ( ( ph /\ ps ) -> ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) e. U_ n e. _om ( A ^m n ) ) | 
						
							| 19 | 6 18 | eqeltrid |  |-  ( ( ph /\ ps ) -> D e. U_ n e. _om ( A ^m n ) ) | 
						
							| 20 |  | pm5.19 |  |-  -. ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) | 
						
							| 21 | 5 | adantr |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) | 
						
							| 22 |  | f1f |  |-  ( K : U_ n e. _om ( x ^m n ) -1-1-> x -> K : U_ n e. _om ( x ^m n ) --> x ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> K : U_ n e. _om ( x ^m n ) --> x ) | 
						
							| 24 |  | ffvelcdm |  |-  ( ( K : U_ n e. _om ( x ^m n ) --> x /\ D e. U_ n e. _om ( x ^m n ) ) -> ( K ` D ) e. x ) | 
						
							| 25 | 23 24 | sylancom |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( K ` D ) e. x ) | 
						
							| 26 |  | f1f1orn |  |-  ( K : U_ n e. _om ( x ^m n ) -1-1-> x -> K : U_ n e. _om ( x ^m n ) -1-1-onto-> ran K ) | 
						
							| 27 | 21 26 | syl |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> K : U_ n e. _om ( x ^m n ) -1-1-onto-> ran K ) | 
						
							| 28 |  | f1ocnvfv1 |  |-  ( ( K : U_ n e. _om ( x ^m n ) -1-1-onto-> ran K /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' K ` ( K ` D ) ) = D ) | 
						
							| 29 | 27 28 | sylancom |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' K ` ( K ` D ) ) = D ) | 
						
							| 30 |  | f1fn |  |-  ( G : ~P A -1-1-> U_ n e. _om ( A ^m n ) -> G Fn ~P A ) | 
						
							| 31 | 7 30 | syl |  |-  ( ( ph /\ ps ) -> G Fn ~P A ) | 
						
							| 32 |  | fnfvelrn |  |-  ( ( G Fn ~P A /\ { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. ~P A ) -> ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) e. ran G ) | 
						
							| 33 | 31 17 32 | syl2anc |  |-  ( ( ph /\ ps ) -> ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) e. ran G ) | 
						
							| 34 | 6 33 | eqeltrid |  |-  ( ( ph /\ ps ) -> D e. ran G ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> D e. ran G ) | 
						
							| 36 | 29 35 | eqeltrd |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' K ` ( K ` D ) ) e. ran G ) | 
						
							| 37 |  | fveq2 |  |-  ( y = ( K ` D ) -> ( `' K ` y ) = ( `' K ` ( K ` D ) ) ) | 
						
							| 38 | 37 | eleq1d |  |-  ( y = ( K ` D ) -> ( ( `' K ` y ) e. ran G <-> ( `' K ` ( K ` D ) ) e. ran G ) ) | 
						
							| 39 |  | id |  |-  ( y = ( K ` D ) -> y = ( K ` D ) ) | 
						
							| 40 |  | 2fveq3 |  |-  ( y = ( K ` D ) -> ( `' G ` ( `' K ` y ) ) = ( `' G ` ( `' K ` ( K ` D ) ) ) ) | 
						
							| 41 | 39 40 | eleq12d |  |-  ( y = ( K ` D ) -> ( y e. ( `' G ` ( `' K ` y ) ) <-> ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) | 
						
							| 42 | 41 | notbid |  |-  ( y = ( K ` D ) -> ( -. y e. ( `' G ` ( `' K ` y ) ) <-> -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) | 
						
							| 43 | 38 42 | anbi12d |  |-  ( y = ( K ` D ) -> ( ( ( `' K ` y ) e. ran G /\ -. y e. ( `' G ` ( `' K ` y ) ) ) <-> ( ( `' K ` ( K ` D ) ) e. ran G /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) ) | 
						
							| 44 |  | fveq2 |  |-  ( w = y -> ( `' K ` w ) = ( `' K ` y ) ) | 
						
							| 45 | 44 | eleq1d |  |-  ( w = y -> ( ( `' K ` w ) e. ran G <-> ( `' K ` y ) e. ran G ) ) | 
						
							| 46 |  | id |  |-  ( w = y -> w = y ) | 
						
							| 47 |  | 2fveq3 |  |-  ( w = y -> ( `' G ` ( `' K ` w ) ) = ( `' G ` ( `' K ` y ) ) ) | 
						
							| 48 | 46 47 | eleq12d |  |-  ( w = y -> ( w e. ( `' G ` ( `' K ` w ) ) <-> y e. ( `' G ` ( `' K ` y ) ) ) ) | 
						
							| 49 | 48 | notbid |  |-  ( w = y -> ( -. w e. ( `' G ` ( `' K ` w ) ) <-> -. y e. ( `' G ` ( `' K ` y ) ) ) ) | 
						
							| 50 | 45 49 | anbi12d |  |-  ( w = y -> ( ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) <-> ( ( `' K ` y ) e. ran G /\ -. y e. ( `' G ` ( `' K ` y ) ) ) ) ) | 
						
							| 51 | 50 | cbvrabv |  |-  { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } = { y e. x | ( ( `' K ` y ) e. ran G /\ -. y e. ( `' G ` ( `' K ` y ) ) ) } | 
						
							| 52 | 43 51 | elrab2 |  |-  ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> ( ( K ` D ) e. x /\ ( ( `' K ` ( K ` D ) ) e. ran G /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) ) | 
						
							| 53 |  | anass |  |-  ( ( ( ( K ` D ) e. x /\ ( `' K ` ( K ` D ) ) e. ran G ) /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) <-> ( ( K ` D ) e. x /\ ( ( `' K ` ( K ` D ) ) e. ran G /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) ) | 
						
							| 54 | 52 53 | bitr4i |  |-  ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> ( ( ( K ` D ) e. x /\ ( `' K ` ( K ` D ) ) e. ran G ) /\ -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) | 
						
							| 55 | 54 | baib |  |-  ( ( ( K ` D ) e. x /\ ( `' K ` ( K ` D ) ) e. ran G ) -> ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) | 
						
							| 56 | 25 36 55 | syl2anc |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) ) ) | 
						
							| 57 | 29 6 | eqtrdi |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' K ` ( K ` D ) ) = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) | 
						
							| 58 | 57 | fveq2d |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' G ` ( `' K ` ( K ` D ) ) ) = ( `' G ` ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) ) | 
						
							| 59 |  | f1f1orn |  |-  ( G : ~P A -1-1-> U_ n e. _om ( A ^m n ) -> G : ~P A -1-1-onto-> ran G ) | 
						
							| 60 | 7 59 | syl |  |-  ( ( ph /\ ps ) -> G : ~P A -1-1-onto-> ran G ) | 
						
							| 61 |  | f1ocnvfv1 |  |-  ( ( G : ~P A -1-1-onto-> ran G /\ { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } e. ~P A ) -> ( `' G ` ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) = { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) | 
						
							| 62 | 60 17 61 | syl2anc |  |-  ( ( ph /\ ps ) -> ( `' G ` ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) = { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' G ` ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) = { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) | 
						
							| 64 | 58 63 | eqtrd |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( `' G ` ( `' K ` ( K ` D ) ) ) = { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) | 
						
							| 65 | 64 | eleq2d |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) <-> ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) | 
						
							| 66 | 65 | notbid |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( -. ( K ` D ) e. ( `' G ` ( `' K ` ( K ` D ) ) ) <-> -. ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) | 
						
							| 67 | 56 66 | bitrd |  |-  ( ( ( ph /\ ps ) /\ D e. U_ n e. _om ( x ^m n ) ) -> ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) | 
						
							| 68 | 67 | ex |  |-  ( ( ph /\ ps ) -> ( D e. U_ n e. _om ( x ^m n ) -> ( ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } <-> -. ( K ` D ) e. { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) ) ) | 
						
							| 69 | 20 68 | mtoi |  |-  ( ( ph /\ ps ) -> -. D e. U_ n e. _om ( x ^m n ) ) | 
						
							| 70 | 19 69 | eldifd |  |-  ( ( ph /\ ps ) -> D e. ( U_ n e. _om ( A ^m n ) \ U_ n e. _om ( x ^m n ) ) ) |