| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwfseqlem4.g |  |-  ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) | 
						
							| 2 |  | pwfseqlem4.x |  |-  ( ph -> X C_ A ) | 
						
							| 3 |  | pwfseqlem4.h |  |-  ( ph -> H : _om -1-1-onto-> X ) | 
						
							| 4 |  | pwfseqlem4.ps |  |-  ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) | 
						
							| 5 |  | pwfseqlem4.k |  |-  ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) | 
						
							| 6 |  | pwfseqlem4.d |  |-  D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) | 
						
							| 7 |  | pwfseqlem4.f |  |-  F = ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) | 
						
							| 8 |  | oveq1 |  |-  ( a = Y -> ( a F s ) = ( Y F s ) ) | 
						
							| 9 |  | 2fveq3 |  |-  ( a = Y -> ( H ` ( card ` a ) ) = ( H ` ( card ` Y ) ) ) | 
						
							| 10 | 8 9 | eqeq12d |  |-  ( a = Y -> ( ( a F s ) = ( H ` ( card ` a ) ) <-> ( Y F s ) = ( H ` ( card ` Y ) ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( s = R -> ( Y F s ) = ( Y F R ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( s = R -> ( ( Y F s ) = ( H ` ( card ` Y ) ) <-> ( Y F R ) = ( H ` ( card ` Y ) ) ) ) | 
						
							| 13 |  | nfcv |  |-  F/_ x a | 
						
							| 14 |  | nfcv |  |-  F/_ r a | 
						
							| 15 |  | nfcv |  |-  F/_ r s | 
						
							| 16 |  | nfmpo1 |  |-  F/_ x ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) | 
						
							| 17 | 7 16 | nfcxfr |  |-  F/_ x F | 
						
							| 18 |  | nfcv |  |-  F/_ x r | 
						
							| 19 | 13 17 18 | nfov |  |-  F/_ x ( a F r ) | 
						
							| 20 | 19 | nfeq1 |  |-  F/ x ( a F r ) = ( H ` ( card ` a ) ) | 
						
							| 21 |  | nfmpo2 |  |-  F/_ r ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) | 
						
							| 22 | 7 21 | nfcxfr |  |-  F/_ r F | 
						
							| 23 | 14 22 15 | nfov |  |-  F/_ r ( a F s ) | 
						
							| 24 | 23 | nfeq1 |  |-  F/ r ( a F s ) = ( H ` ( card ` a ) ) | 
						
							| 25 |  | oveq1 |  |-  ( x = a -> ( x F r ) = ( a F r ) ) | 
						
							| 26 |  | 2fveq3 |  |-  ( x = a -> ( H ` ( card ` x ) ) = ( H ` ( card ` a ) ) ) | 
						
							| 27 | 25 26 | eqeq12d |  |-  ( x = a -> ( ( x F r ) = ( H ` ( card ` x ) ) <-> ( a F r ) = ( H ` ( card ` a ) ) ) ) | 
						
							| 28 |  | oveq2 |  |-  ( r = s -> ( a F r ) = ( a F s ) ) | 
						
							| 29 | 28 | eqeq1d |  |-  ( r = s -> ( ( a F r ) = ( H ` ( card ` a ) ) <-> ( a F s ) = ( H ` ( card ` a ) ) ) ) | 
						
							| 30 |  | vex |  |-  x e. _V | 
						
							| 31 |  | vex |  |-  r e. _V | 
						
							| 32 |  | fvex |  |-  ( H ` ( card ` x ) ) e. _V | 
						
							| 33 |  | fvex |  |-  ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) e. _V | 
						
							| 34 | 32 33 | ifex |  |-  if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) e. _V | 
						
							| 35 | 7 | ovmpt4g |  |-  ( ( x e. _V /\ r e. _V /\ if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) e. _V ) -> ( x F r ) = if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) | 
						
							| 36 | 30 31 34 35 | mp3an |  |-  ( x F r ) = if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) | 
						
							| 37 |  | iftrue |  |-  ( x e. Fin -> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) = ( H ` ( card ` x ) ) ) | 
						
							| 38 | 36 37 | eqtrid |  |-  ( x e. Fin -> ( x F r ) = ( H ` ( card ` x ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( x e. Fin /\ r e. V ) -> ( x F r ) = ( H ` ( card ` x ) ) ) | 
						
							| 40 | 13 14 15 20 24 27 29 39 | vtocl2gaf |  |-  ( ( a e. Fin /\ s e. V ) -> ( a F s ) = ( H ` ( card ` a ) ) ) | 
						
							| 41 | 10 12 40 | vtocl2ga |  |-  ( ( Y e. Fin /\ R e. V ) -> ( Y F R ) = ( H ` ( card ` Y ) ) ) |