Description: Lemma for pwfseq . Although in some ways pwfseqlem4 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection K from the set of finite sequences on an infinite set x to x . Now this alone would not be difficult to prove; this is mostly the claim of fseqen . However, what is needed for the proof is acanonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.
If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen . The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms ( cnfcom3c ), which can be used to construct a pairing function explicitly using properties of the ordinal exponential ( infxpenc ). (Contributed by Mario Carneiro, 31-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwfseqlem5.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
pwfseqlem5.x | |- ( ph -> X C_ A ) |
||
pwfseqlem5.h | |- ( ph -> H : _om -1-1-onto-> X ) |
||
pwfseqlem5.ps | |- ( ps <-> ( ( t C_ A /\ r C_ ( t X. t ) /\ r We t ) /\ _om ~<_ t ) ) |
||
pwfseqlem5.n | |- ( ph -> A. b e. ( har ` ~P A ) ( _om C_ b -> ( N ` b ) : ( b X. b ) -1-1-onto-> b ) ) |
||
pwfseqlem5.o | |- O = OrdIso ( r , t ) |
||
pwfseqlem5.t | |- T = ( u e. dom O , v e. dom O |-> <. ( O ` u ) , ( O ` v ) >. ) |
||
pwfseqlem5.p | |- P = ( ( O o. ( N ` dom O ) ) o. `' T ) |
||
pwfseqlem5.s | |- S = seqom ( ( k e. _V , f e. _V |-> ( x e. ( t ^m suc k ) |-> ( ( f ` ( x |` k ) ) P ( x ` k ) ) ) ) , { <. (/) , ( O ` (/) ) >. } ) |
||
pwfseqlem5.q | |- Q = ( y e. U_ n e. _om ( t ^m n ) |-> <. dom y , ( ( S ` dom y ) ` y ) >. ) |
||
pwfseqlem5.i | |- I = ( x e. _om , y e. t |-> <. ( O ` x ) , y >. ) |
||
pwfseqlem5.k | |- K = ( ( P o. I ) o. Q ) |
||
Assertion | pwfseqlem5 | |- -. ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwfseqlem5.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
2 | pwfseqlem5.x | |- ( ph -> X C_ A ) |
|
3 | pwfseqlem5.h | |- ( ph -> H : _om -1-1-onto-> X ) |
|
4 | pwfseqlem5.ps | |- ( ps <-> ( ( t C_ A /\ r C_ ( t X. t ) /\ r We t ) /\ _om ~<_ t ) ) |
|
5 | pwfseqlem5.n | |- ( ph -> A. b e. ( har ` ~P A ) ( _om C_ b -> ( N ` b ) : ( b X. b ) -1-1-onto-> b ) ) |
|
6 | pwfseqlem5.o | |- O = OrdIso ( r , t ) |
|
7 | pwfseqlem5.t | |- T = ( u e. dom O , v e. dom O |-> <. ( O ` u ) , ( O ` v ) >. ) |
|
8 | pwfseqlem5.p | |- P = ( ( O o. ( N ` dom O ) ) o. `' T ) |
|
9 | pwfseqlem5.s | |- S = seqom ( ( k e. _V , f e. _V |-> ( x e. ( t ^m suc k ) |-> ( ( f ` ( x |` k ) ) P ( x ` k ) ) ) ) , { <. (/) , ( O ` (/) ) >. } ) |
|
10 | pwfseqlem5.q | |- Q = ( y e. U_ n e. _om ( t ^m n ) |-> <. dom y , ( ( S ` dom y ) ` y ) >. ) |
|
11 | pwfseqlem5.i | |- I = ( x e. _om , y e. t |-> <. ( O ` x ) , y >. ) |
|
12 | pwfseqlem5.k | |- K = ( ( P o. I ) o. Q ) |
|
13 | vex | |- t e. _V |
|
14 | simprl3 | |- ( ( ph /\ ( ( t C_ A /\ r C_ ( t X. t ) /\ r We t ) /\ _om ~<_ t ) ) -> r We t ) |
|
15 | 4 14 | sylan2b | |- ( ( ph /\ ps ) -> r We t ) |
16 | 6 | oiiso | |- ( ( t e. _V /\ r We t ) -> O Isom _E , r ( dom O , t ) ) |
17 | 13 15 16 | sylancr | |- ( ( ph /\ ps ) -> O Isom _E , r ( dom O , t ) ) |
18 | isof1o | |- ( O Isom _E , r ( dom O , t ) -> O : dom O -1-1-onto-> t ) |
|
19 | 17 18 | syl | |- ( ( ph /\ ps ) -> O : dom O -1-1-onto-> t ) |
20 | cardom | |- ( card ` _om ) = _om |
|
21 | simprr | |- ( ( ph /\ ( ( t C_ A /\ r C_ ( t X. t ) /\ r We t ) /\ _om ~<_ t ) ) -> _om ~<_ t ) |
|
22 | 4 21 | sylan2b | |- ( ( ph /\ ps ) -> _om ~<_ t ) |
23 | 6 | oien | |- ( ( t e. _V /\ r We t ) -> dom O ~~ t ) |
24 | 13 15 23 | sylancr | |- ( ( ph /\ ps ) -> dom O ~~ t ) |
25 | 24 | ensymd | |- ( ( ph /\ ps ) -> t ~~ dom O ) |
26 | domentr | |- ( ( _om ~<_ t /\ t ~~ dom O ) -> _om ~<_ dom O ) |
|
27 | 22 25 26 | syl2anc | |- ( ( ph /\ ps ) -> _om ~<_ dom O ) |
28 | omelon | |- _om e. On |
|
29 | onenon | |- ( _om e. On -> _om e. dom card ) |
|
30 | 28 29 | ax-mp | |- _om e. dom card |
31 | 6 | oion | |- ( t e. _V -> dom O e. On ) |
32 | 31 | elv | |- dom O e. On |
33 | onenon | |- ( dom O e. On -> dom O e. dom card ) |
|
34 | 32 33 | mp1i | |- ( ( ph /\ ps ) -> dom O e. dom card ) |
35 | carddom2 | |- ( ( _om e. dom card /\ dom O e. dom card ) -> ( ( card ` _om ) C_ ( card ` dom O ) <-> _om ~<_ dom O ) ) |
|
36 | 30 34 35 | sylancr | |- ( ( ph /\ ps ) -> ( ( card ` _om ) C_ ( card ` dom O ) <-> _om ~<_ dom O ) ) |
37 | 27 36 | mpbird | |- ( ( ph /\ ps ) -> ( card ` _om ) C_ ( card ` dom O ) ) |
38 | 20 37 | eqsstrrid | |- ( ( ph /\ ps ) -> _om C_ ( card ` dom O ) ) |
39 | cardonle | |- ( dom O e. On -> ( card ` dom O ) C_ dom O ) |
|
40 | 32 39 | mp1i | |- ( ( ph /\ ps ) -> ( card ` dom O ) C_ dom O ) |
41 | 38 40 | sstrd | |- ( ( ph /\ ps ) -> _om C_ dom O ) |
42 | sseq2 | |- ( b = dom O -> ( _om C_ b <-> _om C_ dom O ) ) |
|
43 | fveq2 | |- ( b = dom O -> ( N ` b ) = ( N ` dom O ) ) |
|
44 | 43 | f1oeq1d | |- ( b = dom O -> ( ( N ` b ) : ( b X. b ) -1-1-onto-> b <-> ( N ` dom O ) : ( b X. b ) -1-1-onto-> b ) ) |
45 | xpeq12 | |- ( ( b = dom O /\ b = dom O ) -> ( b X. b ) = ( dom O X. dom O ) ) |
|
46 | 45 | anidms | |- ( b = dom O -> ( b X. b ) = ( dom O X. dom O ) ) |
47 | 46 | f1oeq2d | |- ( b = dom O -> ( ( N ` dom O ) : ( b X. b ) -1-1-onto-> b <-> ( N ` dom O ) : ( dom O X. dom O ) -1-1-onto-> b ) ) |
48 | f1oeq3 | |- ( b = dom O -> ( ( N ` dom O ) : ( dom O X. dom O ) -1-1-onto-> b <-> ( N ` dom O ) : ( dom O X. dom O ) -1-1-onto-> dom O ) ) |
|
49 | 44 47 48 | 3bitrd | |- ( b = dom O -> ( ( N ` b ) : ( b X. b ) -1-1-onto-> b <-> ( N ` dom O ) : ( dom O X. dom O ) -1-1-onto-> dom O ) ) |
50 | 42 49 | imbi12d | |- ( b = dom O -> ( ( _om C_ b -> ( N ` b ) : ( b X. b ) -1-1-onto-> b ) <-> ( _om C_ dom O -> ( N ` dom O ) : ( dom O X. dom O ) -1-1-onto-> dom O ) ) ) |
51 | 5 | adantr | |- ( ( ph /\ ps ) -> A. b e. ( har ` ~P A ) ( _om C_ b -> ( N ` b ) : ( b X. b ) -1-1-onto-> b ) ) |
52 | 32 | a1i | |- ( ( ph /\ ps ) -> dom O e. On ) |
53 | 1 | adantr | |- ( ( ph /\ ps ) -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
54 | omex | |- _om e. _V |
|
55 | ovex | |- ( A ^m n ) e. _V |
|
56 | 54 55 | iunex | |- U_ n e. _om ( A ^m n ) e. _V |
57 | f1dmex | |- ( ( G : ~P A -1-1-> U_ n e. _om ( A ^m n ) /\ U_ n e. _om ( A ^m n ) e. _V ) -> ~P A e. _V ) |
|
58 | 53 56 57 | sylancl | |- ( ( ph /\ ps ) -> ~P A e. _V ) |
59 | pwexb | |- ( A e. _V <-> ~P A e. _V ) |
|
60 | 58 59 | sylibr | |- ( ( ph /\ ps ) -> A e. _V ) |
61 | simprl1 | |- ( ( ph /\ ( ( t C_ A /\ r C_ ( t X. t ) /\ r We t ) /\ _om ~<_ t ) ) -> t C_ A ) |
|
62 | 4 61 | sylan2b | |- ( ( ph /\ ps ) -> t C_ A ) |
63 | ssdomg | |- ( A e. _V -> ( t C_ A -> t ~<_ A ) ) |
|
64 | 60 62 63 | sylc | |- ( ( ph /\ ps ) -> t ~<_ A ) |
65 | canth2g | |- ( A e. _V -> A ~< ~P A ) |
|
66 | sdomdom | |- ( A ~< ~P A -> A ~<_ ~P A ) |
|
67 | 60 65 66 | 3syl | |- ( ( ph /\ ps ) -> A ~<_ ~P A ) |
68 | domtr | |- ( ( t ~<_ A /\ A ~<_ ~P A ) -> t ~<_ ~P A ) |
|
69 | 64 67 68 | syl2anc | |- ( ( ph /\ ps ) -> t ~<_ ~P A ) |
70 | endomtr | |- ( ( dom O ~~ t /\ t ~<_ ~P A ) -> dom O ~<_ ~P A ) |
|
71 | 24 69 70 | syl2anc | |- ( ( ph /\ ps ) -> dom O ~<_ ~P A ) |
72 | elharval | |- ( dom O e. ( har ` ~P A ) <-> ( dom O e. On /\ dom O ~<_ ~P A ) ) |
|
73 | 52 71 72 | sylanbrc | |- ( ( ph /\ ps ) -> dom O e. ( har ` ~P A ) ) |
74 | 50 51 73 | rspcdva | |- ( ( ph /\ ps ) -> ( _om C_ dom O -> ( N ` dom O ) : ( dom O X. dom O ) -1-1-onto-> dom O ) ) |
75 | 41 74 | mpd | |- ( ( ph /\ ps ) -> ( N ` dom O ) : ( dom O X. dom O ) -1-1-onto-> dom O ) |
76 | f1oco | |- ( ( O : dom O -1-1-onto-> t /\ ( N ` dom O ) : ( dom O X. dom O ) -1-1-onto-> dom O ) -> ( O o. ( N ` dom O ) ) : ( dom O X. dom O ) -1-1-onto-> t ) |
|
77 | 19 75 76 | syl2anc | |- ( ( ph /\ ps ) -> ( O o. ( N ` dom O ) ) : ( dom O X. dom O ) -1-1-onto-> t ) |
78 | f1of | |- ( O : dom O -1-1-onto-> t -> O : dom O --> t ) |
|
79 | 19 78 | syl | |- ( ( ph /\ ps ) -> O : dom O --> t ) |
80 | 79 | feqmptd | |- ( ( ph /\ ps ) -> O = ( u e. dom O |-> ( O ` u ) ) ) |
81 | 80 | f1oeq1d | |- ( ( ph /\ ps ) -> ( O : dom O -1-1-onto-> t <-> ( u e. dom O |-> ( O ` u ) ) : dom O -1-1-onto-> t ) ) |
82 | 19 81 | mpbid | |- ( ( ph /\ ps ) -> ( u e. dom O |-> ( O ` u ) ) : dom O -1-1-onto-> t ) |
83 | 79 | feqmptd | |- ( ( ph /\ ps ) -> O = ( v e. dom O |-> ( O ` v ) ) ) |
84 | 83 | f1oeq1d | |- ( ( ph /\ ps ) -> ( O : dom O -1-1-onto-> t <-> ( v e. dom O |-> ( O ` v ) ) : dom O -1-1-onto-> t ) ) |
85 | 19 84 | mpbid | |- ( ( ph /\ ps ) -> ( v e. dom O |-> ( O ` v ) ) : dom O -1-1-onto-> t ) |
86 | 82 85 | xpf1o | |- ( ( ph /\ ps ) -> ( u e. dom O , v e. dom O |-> <. ( O ` u ) , ( O ` v ) >. ) : ( dom O X. dom O ) -1-1-onto-> ( t X. t ) ) |
87 | f1oeq1 | |- ( T = ( u e. dom O , v e. dom O |-> <. ( O ` u ) , ( O ` v ) >. ) -> ( T : ( dom O X. dom O ) -1-1-onto-> ( t X. t ) <-> ( u e. dom O , v e. dom O |-> <. ( O ` u ) , ( O ` v ) >. ) : ( dom O X. dom O ) -1-1-onto-> ( t X. t ) ) ) |
|
88 | 7 87 | ax-mp | |- ( T : ( dom O X. dom O ) -1-1-onto-> ( t X. t ) <-> ( u e. dom O , v e. dom O |-> <. ( O ` u ) , ( O ` v ) >. ) : ( dom O X. dom O ) -1-1-onto-> ( t X. t ) ) |
89 | 86 88 | sylibr | |- ( ( ph /\ ps ) -> T : ( dom O X. dom O ) -1-1-onto-> ( t X. t ) ) |
90 | f1ocnv | |- ( T : ( dom O X. dom O ) -1-1-onto-> ( t X. t ) -> `' T : ( t X. t ) -1-1-onto-> ( dom O X. dom O ) ) |
|
91 | 89 90 | syl | |- ( ( ph /\ ps ) -> `' T : ( t X. t ) -1-1-onto-> ( dom O X. dom O ) ) |
92 | f1oco | |- ( ( ( O o. ( N ` dom O ) ) : ( dom O X. dom O ) -1-1-onto-> t /\ `' T : ( t X. t ) -1-1-onto-> ( dom O X. dom O ) ) -> ( ( O o. ( N ` dom O ) ) o. `' T ) : ( t X. t ) -1-1-onto-> t ) |
|
93 | 77 91 92 | syl2anc | |- ( ( ph /\ ps ) -> ( ( O o. ( N ` dom O ) ) o. `' T ) : ( t X. t ) -1-1-onto-> t ) |
94 | f1oeq1 | |- ( P = ( ( O o. ( N ` dom O ) ) o. `' T ) -> ( P : ( t X. t ) -1-1-onto-> t <-> ( ( O o. ( N ` dom O ) ) o. `' T ) : ( t X. t ) -1-1-onto-> t ) ) |
|
95 | 8 94 | ax-mp | |- ( P : ( t X. t ) -1-1-onto-> t <-> ( ( O o. ( N ` dom O ) ) o. `' T ) : ( t X. t ) -1-1-onto-> t ) |
96 | 93 95 | sylibr | |- ( ( ph /\ ps ) -> P : ( t X. t ) -1-1-onto-> t ) |
97 | f1of1 | |- ( P : ( t X. t ) -1-1-onto-> t -> P : ( t X. t ) -1-1-> t ) |
|
98 | 96 97 | syl | |- ( ( ph /\ ps ) -> P : ( t X. t ) -1-1-> t ) |
99 | f1of1 | |- ( O : dom O -1-1-onto-> t -> O : dom O -1-1-> t ) |
|
100 | 19 99 | syl | |- ( ( ph /\ ps ) -> O : dom O -1-1-> t ) |
101 | f1ssres | |- ( ( O : dom O -1-1-> t /\ _om C_ dom O ) -> ( O |` _om ) : _om -1-1-> t ) |
|
102 | 100 41 101 | syl2anc | |- ( ( ph /\ ps ) -> ( O |` _om ) : _om -1-1-> t ) |
103 | f1f1orn | |- ( ( O |` _om ) : _om -1-1-> t -> ( O |` _om ) : _om -1-1-onto-> ran ( O |` _om ) ) |
|
104 | 102 103 | syl | |- ( ( ph /\ ps ) -> ( O |` _om ) : _om -1-1-onto-> ran ( O |` _om ) ) |
105 | 79 41 | feqresmpt | |- ( ( ph /\ ps ) -> ( O |` _om ) = ( x e. _om |-> ( O ` x ) ) ) |
106 | 105 | f1oeq1d | |- ( ( ph /\ ps ) -> ( ( O |` _om ) : _om -1-1-onto-> ran ( O |` _om ) <-> ( x e. _om |-> ( O ` x ) ) : _om -1-1-onto-> ran ( O |` _om ) ) ) |
107 | 104 106 | mpbid | |- ( ( ph /\ ps ) -> ( x e. _om |-> ( O ` x ) ) : _om -1-1-onto-> ran ( O |` _om ) ) |
108 | mptresid | |- ( _I |` t ) = ( y e. t |-> y ) |
|
109 | 108 | eqcomi | |- ( y e. t |-> y ) = ( _I |` t ) |
110 | f1oi | |- ( _I |` t ) : t -1-1-onto-> t |
|
111 | f1oeq1 | |- ( ( y e. t |-> y ) = ( _I |` t ) -> ( ( y e. t |-> y ) : t -1-1-onto-> t <-> ( _I |` t ) : t -1-1-onto-> t ) ) |
|
112 | 110 111 | mpbiri | |- ( ( y e. t |-> y ) = ( _I |` t ) -> ( y e. t |-> y ) : t -1-1-onto-> t ) |
113 | 109 112 | mp1i | |- ( ( ph /\ ps ) -> ( y e. t |-> y ) : t -1-1-onto-> t ) |
114 | 107 113 | xpf1o | |- ( ( ph /\ ps ) -> ( x e. _om , y e. t |-> <. ( O ` x ) , y >. ) : ( _om X. t ) -1-1-onto-> ( ran ( O |` _om ) X. t ) ) |
115 | f1oeq1 | |- ( I = ( x e. _om , y e. t |-> <. ( O ` x ) , y >. ) -> ( I : ( _om X. t ) -1-1-onto-> ( ran ( O |` _om ) X. t ) <-> ( x e. _om , y e. t |-> <. ( O ` x ) , y >. ) : ( _om X. t ) -1-1-onto-> ( ran ( O |` _om ) X. t ) ) ) |
|
116 | 11 115 | ax-mp | |- ( I : ( _om X. t ) -1-1-onto-> ( ran ( O |` _om ) X. t ) <-> ( x e. _om , y e. t |-> <. ( O ` x ) , y >. ) : ( _om X. t ) -1-1-onto-> ( ran ( O |` _om ) X. t ) ) |
117 | 114 116 | sylibr | |- ( ( ph /\ ps ) -> I : ( _om X. t ) -1-1-onto-> ( ran ( O |` _om ) X. t ) ) |
118 | f1of1 | |- ( I : ( _om X. t ) -1-1-onto-> ( ran ( O |` _om ) X. t ) -> I : ( _om X. t ) -1-1-> ( ran ( O |` _om ) X. t ) ) |
|
119 | 117 118 | syl | |- ( ( ph /\ ps ) -> I : ( _om X. t ) -1-1-> ( ran ( O |` _om ) X. t ) ) |
120 | f1f | |- ( ( O |` _om ) : _om -1-1-> t -> ( O |` _om ) : _om --> t ) |
|
121 | frn | |- ( ( O |` _om ) : _om --> t -> ran ( O |` _om ) C_ t ) |
|
122 | xpss1 | |- ( ran ( O |` _om ) C_ t -> ( ran ( O |` _om ) X. t ) C_ ( t X. t ) ) |
|
123 | 102 120 121 122 | 4syl | |- ( ( ph /\ ps ) -> ( ran ( O |` _om ) X. t ) C_ ( t X. t ) ) |
124 | f1ss | |- ( ( I : ( _om X. t ) -1-1-> ( ran ( O |` _om ) X. t ) /\ ( ran ( O |` _om ) X. t ) C_ ( t X. t ) ) -> I : ( _om X. t ) -1-1-> ( t X. t ) ) |
|
125 | 119 123 124 | syl2anc | |- ( ( ph /\ ps ) -> I : ( _om X. t ) -1-1-> ( t X. t ) ) |
126 | f1co | |- ( ( P : ( t X. t ) -1-1-> t /\ I : ( _om X. t ) -1-1-> ( t X. t ) ) -> ( P o. I ) : ( _om X. t ) -1-1-> t ) |
|
127 | 98 125 126 | syl2anc | |- ( ( ph /\ ps ) -> ( P o. I ) : ( _om X. t ) -1-1-> t ) |
128 | 13 | a1i | |- ( ( ph /\ ps ) -> t e. _V ) |
129 | peano1 | |- (/) e. _om |
|
130 | 129 | a1i | |- ( ( ph /\ ps ) -> (/) e. _om ) |
131 | 41 130 | sseldd | |- ( ( ph /\ ps ) -> (/) e. dom O ) |
132 | 79 131 | ffvelrnd | |- ( ( ph /\ ps ) -> ( O ` (/) ) e. t ) |
133 | 128 132 96 9 10 | fseqenlem2 | |- ( ( ph /\ ps ) -> Q : U_ n e. _om ( t ^m n ) -1-1-> ( _om X. t ) ) |
134 | f1co | |- ( ( ( P o. I ) : ( _om X. t ) -1-1-> t /\ Q : U_ n e. _om ( t ^m n ) -1-1-> ( _om X. t ) ) -> ( ( P o. I ) o. Q ) : U_ n e. _om ( t ^m n ) -1-1-> t ) |
|
135 | 127 133 134 | syl2anc | |- ( ( ph /\ ps ) -> ( ( P o. I ) o. Q ) : U_ n e. _om ( t ^m n ) -1-1-> t ) |
136 | f1eq1 | |- ( K = ( ( P o. I ) o. Q ) -> ( K : U_ n e. _om ( t ^m n ) -1-1-> t <-> ( ( P o. I ) o. Q ) : U_ n e. _om ( t ^m n ) -1-1-> t ) ) |
|
137 | 12 136 | ax-mp | |- ( K : U_ n e. _om ( t ^m n ) -1-1-> t <-> ( ( P o. I ) o. Q ) : U_ n e. _om ( t ^m n ) -1-1-> t ) |
138 | 135 137 | sylibr | |- ( ( ph /\ ps ) -> K : U_ n e. _om ( t ^m n ) -1-1-> t ) |
139 | eqid | |- ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) = ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) |
|
140 | eqid | |- ( t e. _V , r e. _V |-> if ( t e. Fin , ( H ` ( card ` t ) ) , ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` |^| { z e. _om | -. ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` z ) e. t } ) ) ) = ( t e. _V , r e. _V |-> if ( t e. Fin , ( H ` ( card ` t ) ) , ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` |^| { z e. _om | -. ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` z ) e. t } ) ) ) |
|
141 | eqid | |- { <. c , d >. | ( ( c C_ A /\ d C_ ( c X. c ) ) /\ ( d We c /\ A. m e. c [. ( `' d " { m } ) / j ]. ( j ( t e. _V , r e. _V |-> if ( t e. Fin , ( H ` ( card ` t ) ) , ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` |^| { z e. _om | -. ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` z ) e. t } ) ) ) ( d i^i ( j X. j ) ) ) = m ) ) } = { <. c , d >. | ( ( c C_ A /\ d C_ ( c X. c ) ) /\ ( d We c /\ A. m e. c [. ( `' d " { m } ) / j ]. ( j ( t e. _V , r e. _V |-> if ( t e. Fin , ( H ` ( card ` t ) ) , ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` |^| { z e. _om | -. ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` z ) e. t } ) ) ) ( d i^i ( j X. j ) ) ) = m ) ) } |
|
142 | 141 | fpwwe2cbv | |- { <. c , d >. | ( ( c C_ A /\ d C_ ( c X. c ) ) /\ ( d We c /\ A. m e. c [. ( `' d " { m } ) / j ]. ( j ( t e. _V , r e. _V |-> if ( t e. Fin , ( H ` ( card ` t ) ) , ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` |^| { z e. _om | -. ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` z ) e. t } ) ) ) ( d i^i ( j X. j ) ) ) = m ) ) } = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. b e. a [. ( `' s " { b } ) / w ]. ( w ( t e. _V , r e. _V |-> if ( t e. Fin , ( H ` ( card ` t ) ) , ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` |^| { z e. _om | -. ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` z ) e. t } ) ) ) ( s i^i ( w X. w ) ) ) = b ) ) } |
143 | eqid | |- U. dom { <. c , d >. | ( ( c C_ A /\ d C_ ( c X. c ) ) /\ ( d We c /\ A. m e. c [. ( `' d " { m } ) / j ]. ( j ( t e. _V , r e. _V |-> if ( t e. Fin , ( H ` ( card ` t ) ) , ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` |^| { z e. _om | -. ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` z ) e. t } ) ) ) ( d i^i ( j X. j ) ) ) = m ) ) } = U. dom { <. c , d >. | ( ( c C_ A /\ d C_ ( c X. c ) ) /\ ( d We c /\ A. m e. c [. ( `' d " { m } ) / j ]. ( j ( t e. _V , r e. _V |-> if ( t e. Fin , ( H ` ( card ` t ) ) , ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` |^| { z e. _om | -. ( ( G ` { i e. t | ( ( `' K ` i ) e. ran G /\ -. i e. ( `' G ` ( `' K ` i ) ) ) } ) ` z ) e. t } ) ) ) ( d i^i ( j X. j ) ) ) = m ) ) } |
|
144 | 1 2 3 4 138 139 140 142 143 | pwfseqlem4 | |- -. ph |