Metamath Proof Explorer


Theorem pwjust

Description: Soundness justification theorem for df-pw . (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion pwjust
|- { x | x C_ A } = { y | y C_ A }

Proof

Step Hyp Ref Expression
1 sseq1
 |-  ( x = z -> ( x C_ A <-> z C_ A ) )
2 1 cbvabv
 |-  { x | x C_ A } = { z | z C_ A }
3 sseq1
 |-  ( z = y -> ( z C_ A <-> y C_ A ) )
4 3 cbvabv
 |-  { z | z C_ A } = { y | y C_ A }
5 2 4 eqtri
 |-  { x | x C_ A } = { y | y C_ A }