| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwm1geoser.a |
|- ( ph -> A e. CC ) |
| 2 |
|
pwm1geoser.n |
|- ( ph -> N e. NN0 ) |
| 3 |
2
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 4 |
|
1exp |
|- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( 1 ^ N ) = 1 ) |
| 6 |
5
|
eqcomd |
|- ( ph -> 1 = ( 1 ^ N ) ) |
| 7 |
6
|
oveq2d |
|- ( ph -> ( ( A ^ N ) - 1 ) = ( ( A ^ N ) - ( 1 ^ N ) ) ) |
| 8 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 9 |
|
pwdif |
|- ( ( N e. NN0 /\ A e. CC /\ 1 e. CC ) -> ( ( A ^ N ) - ( 1 ^ N ) ) = ( ( A - 1 ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) ) ) |
| 10 |
2 1 8 9
|
syl3anc |
|- ( ph -> ( ( A ^ N ) - ( 1 ^ N ) ) = ( ( A - 1 ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) ) ) |
| 11 |
|
fzoval |
|- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 12 |
3 11
|
syl |
|- ( ph -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> N e. ZZ ) |
| 14 |
|
elfzoelz |
|- ( k e. ( 0 ..^ N ) -> k e. ZZ ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ZZ ) |
| 16 |
13 15
|
zsubcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( N - k ) e. ZZ ) |
| 17 |
|
peano2zm |
|- ( ( N - k ) e. ZZ -> ( ( N - k ) - 1 ) e. ZZ ) |
| 18 |
|
1exp |
|- ( ( ( N - k ) - 1 ) e. ZZ -> ( 1 ^ ( ( N - k ) - 1 ) ) = 1 ) |
| 19 |
16 17 18
|
3syl |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( 1 ^ ( ( N - k ) - 1 ) ) = 1 ) |
| 20 |
19
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) = ( ( A ^ k ) x. 1 ) ) |
| 21 |
1
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> A e. CC ) |
| 22 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ N ) -> k e. NN0 ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. NN0 ) |
| 24 |
21 23
|
expcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( A ^ k ) e. CC ) |
| 25 |
24
|
mulridd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. 1 ) = ( A ^ k ) ) |
| 26 |
20 25
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) = ( A ^ k ) ) |
| 27 |
12 26
|
sumeq12dv |
|- ( ph -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) |
| 28 |
27
|
oveq2d |
|- ( ph -> ( ( A - 1 ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A - 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) ) |
| 29 |
7 10 28
|
3eqtrd |
|- ( ph -> ( ( A ^ N ) - 1 ) = ( ( A - 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) ) |