| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwmnd.b |
|- ( Base ` M ) = ~P A |
| 2 |
|
pwmnd.p |
|- ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) |
| 3 |
1
|
eleq2i |
|- ( a e. ( Base ` M ) <-> a e. ~P A ) |
| 4 |
1
|
eleq2i |
|- ( b e. ( Base ` M ) <-> b e. ~P A ) |
| 5 |
|
pwuncl |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( a u. b ) e. ~P A ) |
| 6 |
1 2
|
pwmndgplus |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( a ( +g ` M ) b ) = ( a u. b ) ) |
| 7 |
1
|
a1i |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( Base ` M ) = ~P A ) |
| 8 |
5 6 7
|
3eltr4d |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( a ( +g ` M ) b ) e. ( Base ` M ) ) |
| 9 |
1
|
eleq2i |
|- ( c e. ( Base ` M ) <-> c e. ~P A ) |
| 10 |
|
unass |
|- ( ( a u. b ) u. c ) = ( a u. ( b u. c ) ) |
| 11 |
6
|
adantr |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) b ) = ( a u. b ) ) |
| 12 |
11
|
oveq1d |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( a u. b ) ( +g ` M ) c ) ) |
| 13 |
1 2
|
pwmndgplus |
|- ( ( ( a u. b ) e. ~P A /\ c e. ~P A ) -> ( ( a u. b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) |
| 14 |
5 13
|
sylan |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a u. b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) |
| 15 |
12 14
|
eqtrd |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) |
| 16 |
1 2
|
pwmndgplus |
|- ( ( b e. ~P A /\ c e. ~P A ) -> ( b ( +g ` M ) c ) = ( b u. c ) ) |
| 17 |
16
|
adantll |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( b ( +g ` M ) c ) = ( b u. c ) ) |
| 18 |
17
|
oveq2d |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( a ( +g ` M ) ( b u. c ) ) ) |
| 19 |
|
simpll |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> a e. ~P A ) |
| 20 |
|
pwuncl |
|- ( ( b e. ~P A /\ c e. ~P A ) -> ( b u. c ) e. ~P A ) |
| 21 |
20
|
adantll |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( b u. c ) e. ~P A ) |
| 22 |
19 21
|
jca |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a e. ~P A /\ ( b u. c ) e. ~P A ) ) |
| 23 |
1 2
|
pwmndgplus |
|- ( ( a e. ~P A /\ ( b u. c ) e. ~P A ) -> ( a ( +g ` M ) ( b u. c ) ) = ( a u. ( b u. c ) ) ) |
| 24 |
22 23
|
syl |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b u. c ) ) = ( a u. ( b u. c ) ) ) |
| 25 |
18 24
|
eqtrd |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( a u. ( b u. c ) ) ) |
| 26 |
10 15 25
|
3eqtr4a |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) |
| 27 |
26
|
ex |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( c e. ~P A -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
| 28 |
9 27
|
biimtrid |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( c e. ( Base ` M ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
| 29 |
28
|
ralrimiv |
|- ( ( a e. ~P A /\ b e. ~P A ) -> A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) |
| 30 |
8 29
|
jca |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
| 31 |
3 4 30
|
syl2anb |
|- ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
| 32 |
31
|
rgen2 |
|- A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) |
| 33 |
|
0ex |
|- (/) e. _V |
| 34 |
|
eleq1 |
|- ( e = (/) -> ( e e. ( Base ` M ) <-> (/) e. ( Base ` M ) ) ) |
| 35 |
|
oveq1 |
|- ( e = (/) -> ( e ( +g ` M ) a ) = ( (/) ( +g ` M ) a ) ) |
| 36 |
35
|
eqeq1d |
|- ( e = (/) -> ( ( e ( +g ` M ) a ) = a <-> ( (/) ( +g ` M ) a ) = a ) ) |
| 37 |
|
oveq2 |
|- ( e = (/) -> ( a ( +g ` M ) e ) = ( a ( +g ` M ) (/) ) ) |
| 38 |
37
|
eqeq1d |
|- ( e = (/) -> ( ( a ( +g ` M ) e ) = a <-> ( a ( +g ` M ) (/) ) = a ) ) |
| 39 |
36 38
|
anbi12d |
|- ( e = (/) -> ( ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) |
| 40 |
39
|
ralbidv |
|- ( e = (/) -> ( A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) |
| 41 |
34 40
|
anbi12d |
|- ( e = (/) -> ( ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) <-> ( (/) e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) ) |
| 42 |
|
0elpw |
|- (/) e. ~P A |
| 43 |
42 1
|
eleqtrri |
|- (/) e. ( Base ` M ) |
| 44 |
1 2
|
pwmndgplus |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( (/) ( +g ` M ) a ) = ( (/) u. a ) ) |
| 45 |
|
0un |
|- ( (/) u. a ) = a |
| 46 |
44 45
|
eqtrdi |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( (/) ( +g ` M ) a ) = a ) |
| 47 |
1 2
|
pwmndgplus |
|- ( ( a e. ~P A /\ (/) e. ~P A ) -> ( a ( +g ` M ) (/) ) = ( a u. (/) ) ) |
| 48 |
47
|
ancoms |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( a ( +g ` M ) (/) ) = ( a u. (/) ) ) |
| 49 |
|
un0 |
|- ( a u. (/) ) = a |
| 50 |
48 49
|
eqtrdi |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( a ( +g ` M ) (/) ) = a ) |
| 51 |
46 50
|
jca |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
| 52 |
42 51
|
mpan |
|- ( a e. ~P A -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
| 53 |
3 52
|
sylbi |
|- ( a e. ( Base ` M ) -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
| 54 |
53
|
rgen |
|- A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) |
| 55 |
43 54
|
pm3.2i |
|- ( (/) e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
| 56 |
33 41 55
|
ceqsexv2d |
|- E. e ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) |
| 57 |
|
df-rex |
|- ( E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> E. e ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) ) |
| 58 |
56 57
|
mpbir |
|- E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) |
| 59 |
32 58
|
pm3.2i |
|- ( A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) /\ E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) |
| 60 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 61 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 62 |
60 61
|
ismnd |
|- ( M e. Mnd <-> ( A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) /\ E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) ) |
| 63 |
59 62
|
mpbir |
|- M e. Mnd |