Step |
Hyp |
Ref |
Expression |
1 |
|
pwmnd.b |
|- ( Base ` M ) = ~P A |
2 |
|
pwmnd.p |
|- ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) |
3 |
1
|
eleq2i |
|- ( a e. ( Base ` M ) <-> a e. ~P A ) |
4 |
1
|
eleq2i |
|- ( b e. ( Base ` M ) <-> b e. ~P A ) |
5 |
|
pwuncl |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( a u. b ) e. ~P A ) |
6 |
1 2
|
pwmndgplus |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( a ( +g ` M ) b ) = ( a u. b ) ) |
7 |
1
|
a1i |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( Base ` M ) = ~P A ) |
8 |
5 6 7
|
3eltr4d |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( a ( +g ` M ) b ) e. ( Base ` M ) ) |
9 |
1
|
eleq2i |
|- ( c e. ( Base ` M ) <-> c e. ~P A ) |
10 |
|
unass |
|- ( ( a u. b ) u. c ) = ( a u. ( b u. c ) ) |
11 |
6
|
adantr |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) b ) = ( a u. b ) ) |
12 |
11
|
oveq1d |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( a u. b ) ( +g ` M ) c ) ) |
13 |
1 2
|
pwmndgplus |
|- ( ( ( a u. b ) e. ~P A /\ c e. ~P A ) -> ( ( a u. b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) |
14 |
5 13
|
sylan |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a u. b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) |
15 |
12 14
|
eqtrd |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( ( a u. b ) u. c ) ) |
16 |
1 2
|
pwmndgplus |
|- ( ( b e. ~P A /\ c e. ~P A ) -> ( b ( +g ` M ) c ) = ( b u. c ) ) |
17 |
16
|
adantll |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( b ( +g ` M ) c ) = ( b u. c ) ) |
18 |
17
|
oveq2d |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( a ( +g ` M ) ( b u. c ) ) ) |
19 |
|
simpll |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> a e. ~P A ) |
20 |
|
pwuncl |
|- ( ( b e. ~P A /\ c e. ~P A ) -> ( b u. c ) e. ~P A ) |
21 |
20
|
adantll |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( b u. c ) e. ~P A ) |
22 |
19 21
|
jca |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a e. ~P A /\ ( b u. c ) e. ~P A ) ) |
23 |
1 2
|
pwmndgplus |
|- ( ( a e. ~P A /\ ( b u. c ) e. ~P A ) -> ( a ( +g ` M ) ( b u. c ) ) = ( a u. ( b u. c ) ) ) |
24 |
22 23
|
syl |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b u. c ) ) = ( a u. ( b u. c ) ) ) |
25 |
18 24
|
eqtrd |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( a ( +g ` M ) ( b ( +g ` M ) c ) ) = ( a u. ( b u. c ) ) ) |
26 |
10 15 25
|
3eqtr4a |
|- ( ( ( a e. ~P A /\ b e. ~P A ) /\ c e. ~P A ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) |
27 |
26
|
ex |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( c e. ~P A -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
28 |
9 27
|
syl5bi |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( c e. ( Base ` M ) -> ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
29 |
28
|
ralrimiv |
|- ( ( a e. ~P A /\ b e. ~P A ) -> A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) |
30 |
8 29
|
jca |
|- ( ( a e. ~P A /\ b e. ~P A ) -> ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
31 |
3 4 30
|
syl2anb |
|- ( ( a e. ( Base ` M ) /\ b e. ( Base ` M ) ) -> ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) ) |
32 |
31
|
rgen2 |
|- A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) |
33 |
|
0ex |
|- (/) e. _V |
34 |
|
eleq1 |
|- ( e = (/) -> ( e e. ( Base ` M ) <-> (/) e. ( Base ` M ) ) ) |
35 |
|
oveq1 |
|- ( e = (/) -> ( e ( +g ` M ) a ) = ( (/) ( +g ` M ) a ) ) |
36 |
35
|
eqeq1d |
|- ( e = (/) -> ( ( e ( +g ` M ) a ) = a <-> ( (/) ( +g ` M ) a ) = a ) ) |
37 |
|
oveq2 |
|- ( e = (/) -> ( a ( +g ` M ) e ) = ( a ( +g ` M ) (/) ) ) |
38 |
37
|
eqeq1d |
|- ( e = (/) -> ( ( a ( +g ` M ) e ) = a <-> ( a ( +g ` M ) (/) ) = a ) ) |
39 |
36 38
|
anbi12d |
|- ( e = (/) -> ( ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) |
40 |
39
|
ralbidv |
|- ( e = (/) -> ( A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) |
41 |
34 40
|
anbi12d |
|- ( e = (/) -> ( ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) <-> ( (/) e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) ) ) |
42 |
|
0elpw |
|- (/) e. ~P A |
43 |
42 1
|
eleqtrri |
|- (/) e. ( Base ` M ) |
44 |
1 2
|
pwmndgplus |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( (/) ( +g ` M ) a ) = ( (/) u. a ) ) |
45 |
|
0un |
|- ( (/) u. a ) = a |
46 |
44 45
|
eqtrdi |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( (/) ( +g ` M ) a ) = a ) |
47 |
1 2
|
pwmndgplus |
|- ( ( a e. ~P A /\ (/) e. ~P A ) -> ( a ( +g ` M ) (/) ) = ( a u. (/) ) ) |
48 |
47
|
ancoms |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( a ( +g ` M ) (/) ) = ( a u. (/) ) ) |
49 |
|
un0 |
|- ( a u. (/) ) = a |
50 |
48 49
|
eqtrdi |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( a ( +g ` M ) (/) ) = a ) |
51 |
46 50
|
jca |
|- ( ( (/) e. ~P A /\ a e. ~P A ) -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
52 |
42 51
|
mpan |
|- ( a e. ~P A -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
53 |
3 52
|
sylbi |
|- ( a e. ( Base ` M ) -> ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
54 |
53
|
rgen |
|- A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) |
55 |
43 54
|
pm3.2i |
|- ( (/) e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( (/) ( +g ` M ) a ) = a /\ ( a ( +g ` M ) (/) ) = a ) ) |
56 |
33 41 55
|
ceqsexv2d |
|- E. e ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) |
57 |
|
df-rex |
|- ( E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) <-> E. e ( e e. ( Base ` M ) /\ A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) ) |
58 |
56 57
|
mpbir |
|- E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) |
59 |
32 58
|
pm3.2i |
|- ( A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) /\ E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) |
60 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
61 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
62 |
60 61
|
ismnd |
|- ( M e. Mnd <-> ( A. a e. ( Base ` M ) A. b e. ( Base ` M ) ( ( a ( +g ` M ) b ) e. ( Base ` M ) /\ A. c e. ( Base ` M ) ( ( a ( +g ` M ) b ) ( +g ` M ) c ) = ( a ( +g ` M ) ( b ( +g ` M ) c ) ) ) /\ E. e e. ( Base ` M ) A. a e. ( Base ` M ) ( ( e ( +g ` M ) a ) = a /\ ( a ( +g ` M ) e ) = a ) ) ) |
63 |
59 62
|
mpbir |
|- M e. Mnd |