| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwmnd.b |
|- ( Base ` M ) = ~P A |
| 2 |
|
pwmnd.p |
|- ( +g ` M ) = ( x e. ~P A , y e. ~P A |-> ( x u. y ) ) |
| 3 |
|
0elpw |
|- (/) e. ~P A |
| 4 |
1
|
eqcomi |
|- ~P A = ( Base ` M ) |
| 5 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 6 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 7 |
|
id |
|- ( (/) e. ~P A -> (/) e. ~P A ) |
| 8 |
1 2
|
pwmndgplus |
|- ( ( (/) e. ~P A /\ z e. ~P A ) -> ( (/) ( +g ` M ) z ) = ( (/) u. z ) ) |
| 9 |
|
0un |
|- ( (/) u. z ) = z |
| 10 |
8 9
|
eqtrdi |
|- ( ( (/) e. ~P A /\ z e. ~P A ) -> ( (/) ( +g ` M ) z ) = z ) |
| 11 |
1 2
|
pwmndgplus |
|- ( ( z e. ~P A /\ (/) e. ~P A ) -> ( z ( +g ` M ) (/) ) = ( z u. (/) ) ) |
| 12 |
11
|
ancoms |
|- ( ( (/) e. ~P A /\ z e. ~P A ) -> ( z ( +g ` M ) (/) ) = ( z u. (/) ) ) |
| 13 |
|
un0 |
|- ( z u. (/) ) = z |
| 14 |
12 13
|
eqtrdi |
|- ( ( (/) e. ~P A /\ z e. ~P A ) -> ( z ( +g ` M ) (/) ) = z ) |
| 15 |
4 5 6 7 10 14
|
ismgmid2 |
|- ( (/) e. ~P A -> (/) = ( 0g ` M ) ) |
| 16 |
15
|
eqcomd |
|- ( (/) e. ~P A -> ( 0g ` M ) = (/) ) |
| 17 |
3 16
|
ax-mp |
|- ( 0g ` M ) = (/) |