Metamath Proof Explorer


Theorem pwnex

Description: The class of all power sets is a proper class. See also snnex . (Contributed by BJ, 2-May-2021)

Ref Expression
Assertion pwnex
|- { x | E. y x = ~P y } e/ _V

Proof

Step Hyp Ref Expression
1 abnex
 |-  ( A. y ( ~P y e. _V /\ y e. ~P y ) -> -. { x | E. y x = ~P y } e. _V )
2 df-nel
 |-  ( { x | E. y x = ~P y } e/ _V <-> -. { x | E. y x = ~P y } e. _V )
3 1 2 sylibr
 |-  ( A. y ( ~P y e. _V /\ y e. ~P y ) -> { x | E. y x = ~P y } e/ _V )
4 vpwex
 |-  ~P y e. _V
5 vex
 |-  y e. _V
6 5 pwid
 |-  y e. ~P y
7 4 6 pm3.2i
 |-  ( ~P y e. _V /\ y e. ~P y )
8 3 7 mpg
 |-  { x | E. y x = ~P y } e/ _V