Description: The class of all power sets is a proper class. See also snnex . (Contributed by BJ, 2-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | pwnex | |- { x | E. y x = ~P y } e/ _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex | |- ( A. y ( ~P y e. _V /\ y e. ~P y ) -> -. { x | E. y x = ~P y } e. _V ) |
|
2 | df-nel | |- ( { x | E. y x = ~P y } e/ _V <-> -. { x | E. y x = ~P y } e. _V ) |
|
3 | 1 2 | sylibr | |- ( A. y ( ~P y e. _V /\ y e. ~P y ) -> { x | E. y x = ~P y } e/ _V ) |
4 | vpwex | |- ~P y e. _V |
|
5 | vex | |- y e. _V |
|
6 | 5 | pwid | |- y e. ~P y |
7 | 4 6 | pm3.2i | |- ( ~P y e. _V /\ y e. ~P y ) |
8 | 3 7 | mpg | |- { x | E. y x = ~P y } e/ _V |