Description: The class of all power sets is a proper class. See also snnex . (Contributed by BJ, 2-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwnex | |- { x | E. y x = ~P y } e/ _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnex | |- ( A. y ( ~P y e. _V /\ y e. ~P y ) -> -. { x | E. y x = ~P y } e. _V ) |
|
| 2 | df-nel | |- ( { x | E. y x = ~P y } e/ _V <-> -. { x | E. y x = ~P y } e. _V ) |
|
| 3 | 1 2 | sylibr | |- ( A. y ( ~P y e. _V /\ y e. ~P y ) -> { x | E. y x = ~P y } e/ _V ) |
| 4 | vpwex | |- ~P y e. _V |
|
| 5 | vex | |- y e. _V |
|
| 6 | 5 | pwid | |- y e. ~P y |
| 7 | 4 6 | pm3.2i | |- ( ~P y e. _V /\ y e. ~P y ) |
| 8 | 3 7 | mpg | |- { x | E. y x = ~P y } e/ _V |