| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ss |
|- ( x C_ { (/) } <-> A. y ( y e. x -> y e. { (/) } ) ) |
| 2 |
|
velsn |
|- ( y e. { (/) } <-> y = (/) ) |
| 3 |
2
|
imbi2i |
|- ( ( y e. x -> y e. { (/) } ) <-> ( y e. x -> y = (/) ) ) |
| 4 |
3
|
albii |
|- ( A. y ( y e. x -> y e. { (/) } ) <-> A. y ( y e. x -> y = (/) ) ) |
| 5 |
1 4
|
bitri |
|- ( x C_ { (/) } <-> A. y ( y e. x -> y = (/) ) ) |
| 6 |
|
neq0 |
|- ( -. x = (/) <-> E. y y e. x ) |
| 7 |
|
exintr |
|- ( A. y ( y e. x -> y = (/) ) -> ( E. y y e. x -> E. y ( y e. x /\ y = (/) ) ) ) |
| 8 |
6 7
|
biimtrid |
|- ( A. y ( y e. x -> y = (/) ) -> ( -. x = (/) -> E. y ( y e. x /\ y = (/) ) ) ) |
| 9 |
|
exancom |
|- ( E. y ( y e. x /\ y = (/) ) <-> E. y ( y = (/) /\ y e. x ) ) |
| 10 |
|
dfclel |
|- ( (/) e. x <-> E. y ( y = (/) /\ y e. x ) ) |
| 11 |
9 10
|
bitr4i |
|- ( E. y ( y e. x /\ y = (/) ) <-> (/) e. x ) |
| 12 |
|
snssi |
|- ( (/) e. x -> { (/) } C_ x ) |
| 13 |
11 12
|
sylbi |
|- ( E. y ( y e. x /\ y = (/) ) -> { (/) } C_ x ) |
| 14 |
8 13
|
syl6 |
|- ( A. y ( y e. x -> y = (/) ) -> ( -. x = (/) -> { (/) } C_ x ) ) |
| 15 |
5 14
|
sylbi |
|- ( x C_ { (/) } -> ( -. x = (/) -> { (/) } C_ x ) ) |
| 16 |
15
|
anc2li |
|- ( x C_ { (/) } -> ( -. x = (/) -> ( x C_ { (/) } /\ { (/) } C_ x ) ) ) |
| 17 |
|
eqss |
|- ( x = { (/) } <-> ( x C_ { (/) } /\ { (/) } C_ x ) ) |
| 18 |
16 17
|
imbitrrdi |
|- ( x C_ { (/) } -> ( -. x = (/) -> x = { (/) } ) ) |
| 19 |
18
|
orrd |
|- ( x C_ { (/) } -> ( x = (/) \/ x = { (/) } ) ) |
| 20 |
|
0ss |
|- (/) C_ { (/) } |
| 21 |
|
sseq1 |
|- ( x = (/) -> ( x C_ { (/) } <-> (/) C_ { (/) } ) ) |
| 22 |
20 21
|
mpbiri |
|- ( x = (/) -> x C_ { (/) } ) |
| 23 |
|
eqimss |
|- ( x = { (/) } -> x C_ { (/) } ) |
| 24 |
22 23
|
jaoi |
|- ( ( x = (/) \/ x = { (/) } ) -> x C_ { (/) } ) |
| 25 |
19 24
|
impbii |
|- ( x C_ { (/) } <-> ( x = (/) \/ x = { (/) } ) ) |
| 26 |
25
|
abbii |
|- { x | x C_ { (/) } } = { x | ( x = (/) \/ x = { (/) } ) } |
| 27 |
|
df-pw |
|- ~P { (/) } = { x | x C_ { (/) } } |
| 28 |
|
dfpr2 |
|- { (/) , { (/) } } = { x | ( x = (/) \/ x = { (/) } ) } |
| 29 |
26 27 28
|
3eqtr4i |
|- ~P { (/) } = { (/) , { (/) } } |