Step |
Hyp |
Ref |
Expression |
1 |
|
pwsmnd.y |
|- Y = ( R ^s I ) |
2 |
|
pws0g.z |
|- .0. = ( 0g ` R ) |
3 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
4 |
|
simpr |
|- ( ( R e. Mnd /\ I e. V ) -> I e. V ) |
5 |
|
fvexd |
|- ( ( R e. Mnd /\ I e. V ) -> ( Scalar ` R ) e. _V ) |
6 |
|
fconst6g |
|- ( R e. Mnd -> ( I X. { R } ) : I --> Mnd ) |
7 |
6
|
adantr |
|- ( ( R e. Mnd /\ I e. V ) -> ( I X. { R } ) : I --> Mnd ) |
8 |
3 4 5 7
|
prds0g |
|- ( ( R e. Mnd /\ I e. V ) -> ( 0g o. ( I X. { R } ) ) = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
9 |
|
fconstmpt |
|- ( I X. { .0. } ) = ( x e. I |-> .0. ) |
10 |
|
elex |
|- ( R e. Mnd -> R e. _V ) |
11 |
10
|
ad2antrr |
|- ( ( ( R e. Mnd /\ I e. V ) /\ x e. I ) -> R e. _V ) |
12 |
|
fconstmpt |
|- ( I X. { R } ) = ( x e. I |-> R ) |
13 |
12
|
a1i |
|- ( ( R e. Mnd /\ I e. V ) -> ( I X. { R } ) = ( x e. I |-> R ) ) |
14 |
|
fn0g |
|- 0g Fn _V |
15 |
14
|
a1i |
|- ( ( R e. Mnd /\ I e. V ) -> 0g Fn _V ) |
16 |
|
dffn5 |
|- ( 0g Fn _V <-> 0g = ( r e. _V |-> ( 0g ` r ) ) ) |
17 |
15 16
|
sylib |
|- ( ( R e. Mnd /\ I e. V ) -> 0g = ( r e. _V |-> ( 0g ` r ) ) ) |
18 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
19 |
18 2
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
20 |
11 13 17 19
|
fmptco |
|- ( ( R e. Mnd /\ I e. V ) -> ( 0g o. ( I X. { R } ) ) = ( x e. I |-> .0. ) ) |
21 |
9 20
|
eqtr4id |
|- ( ( R e. Mnd /\ I e. V ) -> ( I X. { .0. } ) = ( 0g o. ( I X. { R } ) ) ) |
22 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
23 |
1 22
|
pwsval |
|- ( ( R e. Mnd /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
24 |
23
|
fveq2d |
|- ( ( R e. Mnd /\ I e. V ) -> ( 0g ` Y ) = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
25 |
8 21 24
|
3eqtr4d |
|- ( ( R e. Mnd /\ I e. V ) -> ( I X. { .0. } ) = ( 0g ` Y ) ) |