| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pws1.y |  |-  Y = ( R ^s I ) | 
						
							| 2 |  | pws1.o |  |-  .1. = ( 1r ` R ) | 
						
							| 3 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 4 | 1 3 | pwsval |  |-  ( ( R e. Ring /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ( R e. Ring /\ I e. V ) -> ( 1r ` Y ) = ( 1r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) | 
						
							| 6 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) | 
						
							| 7 |  | simpr |  |-  ( ( R e. Ring /\ I e. V ) -> I e. V ) | 
						
							| 8 |  | fvexd |  |-  ( ( R e. Ring /\ I e. V ) -> ( Scalar ` R ) e. _V ) | 
						
							| 9 |  | fconst6g |  |-  ( R e. Ring -> ( I X. { R } ) : I --> Ring ) | 
						
							| 10 | 9 | adantr |  |-  ( ( R e. Ring /\ I e. V ) -> ( I X. { R } ) : I --> Ring ) | 
						
							| 11 | 6 7 8 10 | prds1 |  |-  ( ( R e. Ring /\ I e. V ) -> ( 1r o. ( I X. { R } ) ) = ( 1r ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) | 
						
							| 12 |  | fn0g |  |-  0g Fn _V | 
						
							| 13 |  | fnmgp |  |-  mulGrp Fn _V | 
						
							| 14 |  | ssv |  |-  ran mulGrp C_ _V | 
						
							| 15 | 14 | a1i |  |-  ( ( R e. Ring /\ I e. V ) -> ran mulGrp C_ _V ) | 
						
							| 16 |  | fnco |  |-  ( ( 0g Fn _V /\ mulGrp Fn _V /\ ran mulGrp C_ _V ) -> ( 0g o. mulGrp ) Fn _V ) | 
						
							| 17 | 12 13 15 16 | mp3an12i |  |-  ( ( R e. Ring /\ I e. V ) -> ( 0g o. mulGrp ) Fn _V ) | 
						
							| 18 |  | df-ur |  |-  1r = ( 0g o. mulGrp ) | 
						
							| 19 | 18 | fneq1i |  |-  ( 1r Fn _V <-> ( 0g o. mulGrp ) Fn _V ) | 
						
							| 20 | 17 19 | sylibr |  |-  ( ( R e. Ring /\ I e. V ) -> 1r Fn _V ) | 
						
							| 21 |  | elex |  |-  ( R e. Ring -> R e. _V ) | 
						
							| 22 | 21 | adantr |  |-  ( ( R e. Ring /\ I e. V ) -> R e. _V ) | 
						
							| 23 |  | fcoconst |  |-  ( ( 1r Fn _V /\ R e. _V ) -> ( 1r o. ( I X. { R } ) ) = ( I X. { ( 1r ` R ) } ) ) | 
						
							| 24 | 20 22 23 | syl2anc |  |-  ( ( R e. Ring /\ I e. V ) -> ( 1r o. ( I X. { R } ) ) = ( I X. { ( 1r ` R ) } ) ) | 
						
							| 25 | 2 | sneqi |  |-  { .1. } = { ( 1r ` R ) } | 
						
							| 26 | 25 | xpeq2i |  |-  ( I X. { .1. } ) = ( I X. { ( 1r ` R ) } ) | 
						
							| 27 | 24 26 | eqtr4di |  |-  ( ( R e. Ring /\ I e. V ) -> ( 1r o. ( I X. { R } ) ) = ( I X. { .1. } ) ) | 
						
							| 28 | 5 11 27 | 3eqtr2rd |  |-  ( ( R e. Ring /\ I e. V ) -> ( I X. { .1. } ) = ( 1r ` Y ) ) |