Step |
Hyp |
Ref |
Expression |
1 |
|
pwsbas.y |
|- Y = ( R ^s I ) |
2 |
|
pwsbas.f |
|- B = ( Base ` R ) |
3 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
4 |
1 3
|
pwsval |
|- ( ( R e. V /\ I e. W ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
5 |
4
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
6 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
7 |
|
fvexd |
|- ( ( R e. V /\ I e. W ) -> ( Scalar ` R ) e. _V ) |
8 |
|
simpr |
|- ( ( R e. V /\ I e. W ) -> I e. W ) |
9 |
|
snex |
|- { R } e. _V |
10 |
|
xpexg |
|- ( ( I e. W /\ { R } e. _V ) -> ( I X. { R } ) e. _V ) |
11 |
8 9 10
|
sylancl |
|- ( ( R e. V /\ I e. W ) -> ( I X. { R } ) e. _V ) |
12 |
|
eqid |
|- ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
13 |
|
snnzg |
|- ( R e. V -> { R } =/= (/) ) |
14 |
13
|
adantr |
|- ( ( R e. V /\ I e. W ) -> { R } =/= (/) ) |
15 |
|
dmxp |
|- ( { R } =/= (/) -> dom ( I X. { R } ) = I ) |
16 |
14 15
|
syl |
|- ( ( R e. V /\ I e. W ) -> dom ( I X. { R } ) = I ) |
17 |
6 7 11 12 16
|
prdsbas |
|- ( ( R e. V /\ I e. W ) -> ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = X_ x e. I ( Base ` ( ( I X. { R } ) ` x ) ) ) |
18 |
|
fvconst2g |
|- ( ( R e. V /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
19 |
18
|
fveq2d |
|- ( ( R e. V /\ x e. I ) -> ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) ) |
20 |
19
|
ralrimiva |
|- ( R e. V -> A. x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) ) |
21 |
20
|
adantr |
|- ( ( R e. V /\ I e. W ) -> A. x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) ) |
22 |
|
ixpeq2 |
|- ( A. x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) -> X_ x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = X_ x e. I ( Base ` R ) ) |
23 |
21 22
|
syl |
|- ( ( R e. V /\ I e. W ) -> X_ x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = X_ x e. I ( Base ` R ) ) |
24 |
17 23
|
eqtrd |
|- ( ( R e. V /\ I e. W ) -> ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = X_ x e. I ( Base ` R ) ) |
25 |
|
fvex |
|- ( Base ` R ) e. _V |
26 |
|
ixpconstg |
|- ( ( I e. W /\ ( Base ` R ) e. _V ) -> X_ x e. I ( Base ` R ) = ( ( Base ` R ) ^m I ) ) |
27 |
8 25 26
|
sylancl |
|- ( ( R e. V /\ I e. W ) -> X_ x e. I ( Base ` R ) = ( ( Base ` R ) ^m I ) ) |
28 |
2
|
oveq1i |
|- ( B ^m I ) = ( ( Base ` R ) ^m I ) |
29 |
27 28
|
eqtr4di |
|- ( ( R e. V /\ I e. W ) -> X_ x e. I ( Base ` R ) = ( B ^m I ) ) |
30 |
5 24 29
|
3eqtrrd |
|- ( ( R e. V /\ I e. W ) -> ( B ^m I ) = ( Base ` Y ) ) |