| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsbas.y |
|- Y = ( R ^s I ) |
| 2 |
|
pwsbas.f |
|- B = ( Base ` R ) |
| 3 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
| 4 |
1 3
|
pwsval |
|- ( ( R e. V /\ I e. W ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 5 |
4
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 6 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
| 7 |
|
fvexd |
|- ( ( R e. V /\ I e. W ) -> ( Scalar ` R ) e. _V ) |
| 8 |
|
simpr |
|- ( ( R e. V /\ I e. W ) -> I e. W ) |
| 9 |
|
snex |
|- { R } e. _V |
| 10 |
|
xpexg |
|- ( ( I e. W /\ { R } e. _V ) -> ( I X. { R } ) e. _V ) |
| 11 |
8 9 10
|
sylancl |
|- ( ( R e. V /\ I e. W ) -> ( I X. { R } ) e. _V ) |
| 12 |
|
eqid |
|- ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 13 |
|
snnzg |
|- ( R e. V -> { R } =/= (/) ) |
| 14 |
13
|
adantr |
|- ( ( R e. V /\ I e. W ) -> { R } =/= (/) ) |
| 15 |
|
dmxp |
|- ( { R } =/= (/) -> dom ( I X. { R } ) = I ) |
| 16 |
14 15
|
syl |
|- ( ( R e. V /\ I e. W ) -> dom ( I X. { R } ) = I ) |
| 17 |
6 7 11 12 16
|
prdsbas |
|- ( ( R e. V /\ I e. W ) -> ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = X_ x e. I ( Base ` ( ( I X. { R } ) ` x ) ) ) |
| 18 |
|
fvconst2g |
|- ( ( R e. V /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
| 19 |
18
|
fveq2d |
|- ( ( R e. V /\ x e. I ) -> ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) ) |
| 20 |
19
|
ralrimiva |
|- ( R e. V -> A. x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) ) |
| 21 |
20
|
adantr |
|- ( ( R e. V /\ I e. W ) -> A. x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) ) |
| 22 |
|
ixpeq2 |
|- ( A. x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) -> X_ x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = X_ x e. I ( Base ` R ) ) |
| 23 |
21 22
|
syl |
|- ( ( R e. V /\ I e. W ) -> X_ x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = X_ x e. I ( Base ` R ) ) |
| 24 |
17 23
|
eqtrd |
|- ( ( R e. V /\ I e. W ) -> ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = X_ x e. I ( Base ` R ) ) |
| 25 |
|
fvex |
|- ( Base ` R ) e. _V |
| 26 |
|
ixpconstg |
|- ( ( I e. W /\ ( Base ` R ) e. _V ) -> X_ x e. I ( Base ` R ) = ( ( Base ` R ) ^m I ) ) |
| 27 |
8 25 26
|
sylancl |
|- ( ( R e. V /\ I e. W ) -> X_ x e. I ( Base ` R ) = ( ( Base ` R ) ^m I ) ) |
| 28 |
2
|
oveq1i |
|- ( B ^m I ) = ( ( Base ` R ) ^m I ) |
| 29 |
27 28
|
eqtr4di |
|- ( ( R e. V /\ I e. W ) -> X_ x e. I ( Base ` R ) = ( B ^m I ) ) |
| 30 |
5 24 29
|
3eqtrrd |
|- ( ( R e. V /\ I e. W ) -> ( B ^m I ) = ( Base ` Y ) ) |