| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsco1rhm.y |  |-  Y = ( R ^s A ) | 
						
							| 2 |  | pwsco1rhm.z |  |-  Z = ( R ^s B ) | 
						
							| 3 |  | pwsco1rhm.c |  |-  C = ( Base ` Z ) | 
						
							| 4 |  | pwsco1rhm.r |  |-  ( ph -> R e. Ring ) | 
						
							| 5 |  | pwsco1rhm.a |  |-  ( ph -> A e. V ) | 
						
							| 6 |  | pwsco1rhm.b |  |-  ( ph -> B e. W ) | 
						
							| 7 |  | pwsco1rhm.f |  |-  ( ph -> F : A --> B ) | 
						
							| 8 | 2 | pwsring |  |-  ( ( R e. Ring /\ B e. W ) -> Z e. Ring ) | 
						
							| 9 | 4 6 8 | syl2anc |  |-  ( ph -> Z e. Ring ) | 
						
							| 10 | 1 | pwsring |  |-  ( ( R e. Ring /\ A e. V ) -> Y e. Ring ) | 
						
							| 11 | 4 5 10 | syl2anc |  |-  ( ph -> Y e. Ring ) | 
						
							| 12 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 13 | 4 12 | syl |  |-  ( ph -> R e. Mnd ) | 
						
							| 14 | 1 2 3 13 5 6 7 | pwsco1mhm |  |-  ( ph -> ( g e. C |-> ( g o. F ) ) e. ( Z MndHom Y ) ) | 
						
							| 15 |  | ringgrp |  |-  ( Z e. Ring -> Z e. Grp ) | 
						
							| 16 | 9 15 | syl |  |-  ( ph -> Z e. Grp ) | 
						
							| 17 |  | ringgrp |  |-  ( Y e. Ring -> Y e. Grp ) | 
						
							| 18 | 11 17 | syl |  |-  ( ph -> Y e. Grp ) | 
						
							| 19 |  | ghmmhmb |  |-  ( ( Z e. Grp /\ Y e. Grp ) -> ( Z GrpHom Y ) = ( Z MndHom Y ) ) | 
						
							| 20 | 16 18 19 | syl2anc |  |-  ( ph -> ( Z GrpHom Y ) = ( Z MndHom Y ) ) | 
						
							| 21 | 14 20 | eleqtrrd |  |-  ( ph -> ( g e. C |-> ( g o. F ) ) e. ( Z GrpHom Y ) ) | 
						
							| 22 |  | eqid |  |-  ( ( mulGrp ` R ) ^s A ) = ( ( mulGrp ` R ) ^s A ) | 
						
							| 23 |  | eqid |  |-  ( ( mulGrp ` R ) ^s B ) = ( ( mulGrp ` R ) ^s B ) | 
						
							| 24 |  | eqid |  |-  ( Base ` ( ( mulGrp ` R ) ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) | 
						
							| 25 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 26 | 25 | ringmgp |  |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 27 | 4 26 | syl |  |-  ( ph -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 28 | 22 23 24 27 5 6 7 | pwsco1mhm |  |-  ( ph -> ( g e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) |-> ( g o. F ) ) e. ( ( ( mulGrp ` R ) ^s B ) MndHom ( ( mulGrp ` R ) ^s A ) ) ) | 
						
							| 29 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 30 | 2 29 | pwsbas |  |-  ( ( R e. Mnd /\ B e. W ) -> ( ( Base ` R ) ^m B ) = ( Base ` Z ) ) | 
						
							| 31 | 13 6 30 | syl2anc |  |-  ( ph -> ( ( Base ` R ) ^m B ) = ( Base ` Z ) ) | 
						
							| 32 | 31 3 | eqtr4di |  |-  ( ph -> ( ( Base ` R ) ^m B ) = C ) | 
						
							| 33 | 25 29 | mgpbas |  |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 34 | 23 33 | pwsbas |  |-  ( ( ( mulGrp ` R ) e. Mnd /\ B e. W ) -> ( ( Base ` R ) ^m B ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 35 | 27 6 34 | syl2anc |  |-  ( ph -> ( ( Base ` R ) ^m B ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 36 | 32 35 | eqtr3d |  |-  ( ph -> C = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 37 | 36 | mpteq1d |  |-  ( ph -> ( g e. C |-> ( g o. F ) ) = ( g e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) |-> ( g o. F ) ) ) | 
						
							| 38 |  | eqidd |  |-  ( ph -> ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( mulGrp ` Z ) ) ) | 
						
							| 39 |  | eqidd |  |-  ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) ) | 
						
							| 40 |  | eqid |  |-  ( mulGrp ` Z ) = ( mulGrp ` Z ) | 
						
							| 41 |  | eqid |  |-  ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( mulGrp ` Z ) ) | 
						
							| 42 |  | eqid |  |-  ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( mulGrp ` Z ) ) | 
						
							| 43 |  | eqid |  |-  ( +g ` ( ( mulGrp ` R ) ^s B ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) | 
						
							| 44 | 2 25 23 40 41 24 42 43 | pwsmgp |  |-  ( ( R e. Ring /\ B e. W ) -> ( ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) | 
						
							| 45 | 4 6 44 | syl2anc |  |-  ( ph -> ( ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) | 
						
							| 46 | 45 | simpld |  |-  ( ph -> ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 47 |  | eqid |  |-  ( mulGrp ` Y ) = ( mulGrp ` Y ) | 
						
							| 48 |  | eqid |  |-  ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) | 
						
							| 49 |  | eqid |  |-  ( Base ` ( ( mulGrp ` R ) ^s A ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) | 
						
							| 50 |  | eqid |  |-  ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( mulGrp ` Y ) ) | 
						
							| 51 |  | eqid |  |-  ( +g ` ( ( mulGrp ` R ) ^s A ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) | 
						
							| 52 | 1 25 22 47 48 49 50 51 | pwsmgp |  |-  ( ( R e. Ring /\ A e. V ) -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) ) | 
						
							| 53 | 4 5 52 | syl2anc |  |-  ( ph -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) ) | 
						
							| 54 | 53 | simpld |  |-  ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) | 
						
							| 55 | 45 | simprd |  |-  ( ph -> ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 56 | 55 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Z ) ) /\ y e. ( Base ` ( mulGrp ` Z ) ) ) ) -> ( x ( +g ` ( mulGrp ` Z ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s B ) ) y ) ) | 
						
							| 57 | 53 | simprd |  |-  ( ph -> ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) | 
						
							| 58 | 57 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Y ) ) /\ y e. ( Base ` ( mulGrp ` Y ) ) ) ) -> ( x ( +g ` ( mulGrp ` Y ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s A ) ) y ) ) | 
						
							| 59 | 38 39 46 54 56 58 | mhmpropd |  |-  ( ph -> ( ( mulGrp ` Z ) MndHom ( mulGrp ` Y ) ) = ( ( ( mulGrp ` R ) ^s B ) MndHom ( ( mulGrp ` R ) ^s A ) ) ) | 
						
							| 60 | 28 37 59 | 3eltr4d |  |-  ( ph -> ( g e. C |-> ( g o. F ) ) e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` Y ) ) ) | 
						
							| 61 | 21 60 | jca |  |-  ( ph -> ( ( g e. C |-> ( g o. F ) ) e. ( Z GrpHom Y ) /\ ( g e. C |-> ( g o. F ) ) e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` Y ) ) ) ) | 
						
							| 62 | 40 47 | isrhm |  |-  ( ( g e. C |-> ( g o. F ) ) e. ( Z RingHom Y ) <-> ( ( Z e. Ring /\ Y e. Ring ) /\ ( ( g e. C |-> ( g o. F ) ) e. ( Z GrpHom Y ) /\ ( g e. C |-> ( g o. F ) ) e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` Y ) ) ) ) ) | 
						
							| 63 | 9 11 61 62 | syl21anbrc |  |-  ( ph -> ( g e. C |-> ( g o. F ) ) e. ( Z RingHom Y ) ) |