| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsco2rhm.y |  |-  Y = ( R ^s A ) | 
						
							| 2 |  | pwsco2rhm.z |  |-  Z = ( S ^s A ) | 
						
							| 3 |  | pwsco2rhm.b |  |-  B = ( Base ` Y ) | 
						
							| 4 |  | pwsco2rhm.a |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | pwsco2rhm.f |  |-  ( ph -> F e. ( R RingHom S ) ) | 
						
							| 6 |  | rhmrcl1 |  |-  ( F e. ( R RingHom S ) -> R e. Ring ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 8 | 1 | pwsring |  |-  ( ( R e. Ring /\ A e. V ) -> Y e. Ring ) | 
						
							| 9 | 7 4 8 | syl2anc |  |-  ( ph -> Y e. Ring ) | 
						
							| 10 |  | rhmrcl2 |  |-  ( F e. ( R RingHom S ) -> S e. Ring ) | 
						
							| 11 | 5 10 | syl |  |-  ( ph -> S e. Ring ) | 
						
							| 12 | 2 | pwsring |  |-  ( ( S e. Ring /\ A e. V ) -> Z e. Ring ) | 
						
							| 13 | 11 4 12 | syl2anc |  |-  ( ph -> Z e. Ring ) | 
						
							| 14 |  | rhmghm |  |-  ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) | 
						
							| 15 | 5 14 | syl |  |-  ( ph -> F e. ( R GrpHom S ) ) | 
						
							| 16 |  | ghmmhm |  |-  ( F e. ( R GrpHom S ) -> F e. ( R MndHom S ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> F e. ( R MndHom S ) ) | 
						
							| 18 | 1 2 3 4 17 | pwsco2mhm |  |-  ( ph -> ( g e. B |-> ( F o. g ) ) e. ( Y MndHom Z ) ) | 
						
							| 19 |  | ringgrp |  |-  ( Y e. Ring -> Y e. Grp ) | 
						
							| 20 | 9 19 | syl |  |-  ( ph -> Y e. Grp ) | 
						
							| 21 |  | ringgrp |  |-  ( Z e. Ring -> Z e. Grp ) | 
						
							| 22 | 13 21 | syl |  |-  ( ph -> Z e. Grp ) | 
						
							| 23 |  | ghmmhmb |  |-  ( ( Y e. Grp /\ Z e. Grp ) -> ( Y GrpHom Z ) = ( Y MndHom Z ) ) | 
						
							| 24 | 20 22 23 | syl2anc |  |-  ( ph -> ( Y GrpHom Z ) = ( Y MndHom Z ) ) | 
						
							| 25 | 18 24 | eleqtrrd |  |-  ( ph -> ( g e. B |-> ( F o. g ) ) e. ( Y GrpHom Z ) ) | 
						
							| 26 |  | eqid |  |-  ( ( mulGrp ` R ) ^s A ) = ( ( mulGrp ` R ) ^s A ) | 
						
							| 27 |  | eqid |  |-  ( ( mulGrp ` S ) ^s A ) = ( ( mulGrp ` S ) ^s A ) | 
						
							| 28 |  | eqid |  |-  ( Base ` ( ( mulGrp ` R ) ^s A ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) | 
						
							| 29 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 30 |  | eqid |  |-  ( mulGrp ` S ) = ( mulGrp ` S ) | 
						
							| 31 | 29 30 | rhmmhm |  |-  ( F e. ( R RingHom S ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) | 
						
							| 32 | 5 31 | syl |  |-  ( ph -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) | 
						
							| 33 | 26 27 28 4 32 | pwsco2mhm |  |-  ( ph -> ( g e. ( Base ` ( ( mulGrp ` R ) ^s A ) ) |-> ( F o. g ) ) e. ( ( ( mulGrp ` R ) ^s A ) MndHom ( ( mulGrp ` S ) ^s A ) ) ) | 
						
							| 34 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 35 | 1 34 | pwsbas |  |-  ( ( R e. Ring /\ A e. V ) -> ( ( Base ` R ) ^m A ) = ( Base ` Y ) ) | 
						
							| 36 | 7 4 35 | syl2anc |  |-  ( ph -> ( ( Base ` R ) ^m A ) = ( Base ` Y ) ) | 
						
							| 37 | 36 3 | eqtr4di |  |-  ( ph -> ( ( Base ` R ) ^m A ) = B ) | 
						
							| 38 | 29 | ringmgp |  |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 39 | 7 38 | syl |  |-  ( ph -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 40 | 29 34 | mgpbas |  |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 41 | 26 40 | pwsbas |  |-  ( ( ( mulGrp ` R ) e. Mnd /\ A e. V ) -> ( ( Base ` R ) ^m A ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) | 
						
							| 42 | 39 4 41 | syl2anc |  |-  ( ph -> ( ( Base ` R ) ^m A ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) | 
						
							| 43 | 37 42 | eqtr3d |  |-  ( ph -> B = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) | 
						
							| 44 | 43 | mpteq1d |  |-  ( ph -> ( g e. B |-> ( F o. g ) ) = ( g e. ( Base ` ( ( mulGrp ` R ) ^s A ) ) |-> ( F o. g ) ) ) | 
						
							| 45 |  | eqidd |  |-  ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) ) | 
						
							| 46 |  | eqidd |  |-  ( ph -> ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( mulGrp ` Z ) ) ) | 
						
							| 47 |  | eqid |  |-  ( mulGrp ` Y ) = ( mulGrp ` Y ) | 
						
							| 48 |  | eqid |  |-  ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) | 
						
							| 49 |  | eqid |  |-  ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( mulGrp ` Y ) ) | 
						
							| 50 |  | eqid |  |-  ( +g ` ( ( mulGrp ` R ) ^s A ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) | 
						
							| 51 | 1 29 26 47 48 28 49 50 | pwsmgp |  |-  ( ( R e. Ring /\ A e. V ) -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) ) | 
						
							| 52 | 7 4 51 | syl2anc |  |-  ( ph -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) ) | 
						
							| 53 | 52 | simpld |  |-  ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) | 
						
							| 54 |  | eqid |  |-  ( mulGrp ` Z ) = ( mulGrp ` Z ) | 
						
							| 55 |  | eqid |  |-  ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( mulGrp ` Z ) ) | 
						
							| 56 |  | eqid |  |-  ( Base ` ( ( mulGrp ` S ) ^s A ) ) = ( Base ` ( ( mulGrp ` S ) ^s A ) ) | 
						
							| 57 |  | eqid |  |-  ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( mulGrp ` Z ) ) | 
						
							| 58 |  | eqid |  |-  ( +g ` ( ( mulGrp ` S ) ^s A ) ) = ( +g ` ( ( mulGrp ` S ) ^s A ) ) | 
						
							| 59 | 2 30 27 54 55 56 57 58 | pwsmgp |  |-  ( ( S e. Ring /\ A e. V ) -> ( ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` S ) ^s A ) ) /\ ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` S ) ^s A ) ) ) ) | 
						
							| 60 | 11 4 59 | syl2anc |  |-  ( ph -> ( ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` S ) ^s A ) ) /\ ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` S ) ^s A ) ) ) ) | 
						
							| 61 | 60 | simpld |  |-  ( ph -> ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` S ) ^s A ) ) ) | 
						
							| 62 | 52 | simprd |  |-  ( ph -> ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) | 
						
							| 63 | 62 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Y ) ) /\ y e. ( Base ` ( mulGrp ` Y ) ) ) ) -> ( x ( +g ` ( mulGrp ` Y ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s A ) ) y ) ) | 
						
							| 64 | 60 | simprd |  |-  ( ph -> ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` S ) ^s A ) ) ) | 
						
							| 65 | 64 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Z ) ) /\ y e. ( Base ` ( mulGrp ` Z ) ) ) ) -> ( x ( +g ` ( mulGrp ` Z ) ) y ) = ( x ( +g ` ( ( mulGrp ` S ) ^s A ) ) y ) ) | 
						
							| 66 | 45 46 53 61 63 65 | mhmpropd |  |-  ( ph -> ( ( mulGrp ` Y ) MndHom ( mulGrp ` Z ) ) = ( ( ( mulGrp ` R ) ^s A ) MndHom ( ( mulGrp ` S ) ^s A ) ) ) | 
						
							| 67 | 33 44 66 | 3eltr4d |  |-  ( ph -> ( g e. B |-> ( F o. g ) ) e. ( ( mulGrp ` Y ) MndHom ( mulGrp ` Z ) ) ) | 
						
							| 68 | 25 67 | jca |  |-  ( ph -> ( ( g e. B |-> ( F o. g ) ) e. ( Y GrpHom Z ) /\ ( g e. B |-> ( F o. g ) ) e. ( ( mulGrp ` Y ) MndHom ( mulGrp ` Z ) ) ) ) | 
						
							| 69 | 47 54 | isrhm |  |-  ( ( g e. B |-> ( F o. g ) ) e. ( Y RingHom Z ) <-> ( ( Y e. Ring /\ Z e. Ring ) /\ ( ( g e. B |-> ( F o. g ) ) e. ( Y GrpHom Z ) /\ ( g e. B |-> ( F o. g ) ) e. ( ( mulGrp ` Y ) MndHom ( mulGrp ` Z ) ) ) ) ) | 
						
							| 70 | 9 13 68 69 | syl21anbrc |  |-  ( ph -> ( g e. B |-> ( F o. g ) ) e. ( Y RingHom Z ) ) |