| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwscrng.y |  |-  Y = ( R ^s I ) | 
						
							| 2 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 3 | 1 2 | pwsval |  |-  ( ( R e. CRing /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 4 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) | 
						
							| 5 |  | simpr |  |-  ( ( R e. CRing /\ I e. V ) -> I e. V ) | 
						
							| 6 |  | fvexd |  |-  ( ( R e. CRing /\ I e. V ) -> ( Scalar ` R ) e. _V ) | 
						
							| 7 |  | fconst6g |  |-  ( R e. CRing -> ( I X. { R } ) : I --> CRing ) | 
						
							| 8 | 7 | adantr |  |-  ( ( R e. CRing /\ I e. V ) -> ( I X. { R } ) : I --> CRing ) | 
						
							| 9 | 4 5 6 8 | prdscrngd |  |-  ( ( R e. CRing /\ I e. V ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. CRing ) | 
						
							| 10 | 3 9 | eqeltrd |  |-  ( ( R e. CRing /\ I e. V ) -> Y e. CRing ) |