| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsdiagghm.y |  |-  Y = ( R ^s I ) | 
						
							| 2 |  | pwsdiagghm.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | pwsdiagghm.f |  |-  F = ( x e. B |-> ( I X. { x } ) ) | 
						
							| 4 |  | grpmnd |  |-  ( R e. Grp -> R e. Mnd ) | 
						
							| 5 | 1 2 3 | pwsdiagmhm |  |-  ( ( R e. Mnd /\ I e. W ) -> F e. ( R MndHom Y ) ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( R e. Grp /\ I e. W ) -> F e. ( R MndHom Y ) ) | 
						
							| 7 | 1 | pwsgrp |  |-  ( ( R e. Grp /\ I e. W ) -> Y e. Grp ) | 
						
							| 8 |  | ghmmhmb |  |-  ( ( R e. Grp /\ Y e. Grp ) -> ( R GrpHom Y ) = ( R MndHom Y ) ) | 
						
							| 9 | 7 8 | syldan |  |-  ( ( R e. Grp /\ I e. W ) -> ( R GrpHom Y ) = ( R MndHom Y ) ) | 
						
							| 10 | 6 9 | eleqtrrd |  |-  ( ( R e. Grp /\ I e. W ) -> F e. ( R GrpHom Y ) ) |