| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsdiaglmhm.y |
|- Y = ( R ^s I ) |
| 2 |
|
pwsdiaglmhm.b |
|- B = ( Base ` R ) |
| 3 |
|
pwsdiaglmhm.f |
|- F = ( x e. B |-> ( I X. { x } ) ) |
| 4 |
|
eqid |
|- ( .s ` R ) = ( .s ` R ) |
| 5 |
|
eqid |
|- ( .s ` Y ) = ( .s ` Y ) |
| 6 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
| 7 |
|
eqid |
|- ( Scalar ` Y ) = ( Scalar ` Y ) |
| 8 |
|
eqid |
|- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
| 9 |
|
simpl |
|- ( ( R e. LMod /\ I e. W ) -> R e. LMod ) |
| 10 |
1
|
pwslmod |
|- ( ( R e. LMod /\ I e. W ) -> Y e. LMod ) |
| 11 |
1 6
|
pwssca |
|- ( ( R e. LMod /\ I e. W ) -> ( Scalar ` R ) = ( Scalar ` Y ) ) |
| 12 |
11
|
eqcomd |
|- ( ( R e. LMod /\ I e. W ) -> ( Scalar ` Y ) = ( Scalar ` R ) ) |
| 13 |
|
lmodgrp |
|- ( R e. LMod -> R e. Grp ) |
| 14 |
1 2 3
|
pwsdiagghm |
|- ( ( R e. Grp /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
| 15 |
13 14
|
sylan |
|- ( ( R e. LMod /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
| 16 |
|
simplr |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> I e. W ) |
| 17 |
2 6 4 8
|
lmodvscl |
|- ( ( R e. LMod /\ a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) -> ( a ( .s ` R ) b ) e. B ) |
| 18 |
17
|
3expb |
|- ( ( R e. LMod /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` R ) b ) e. B ) |
| 19 |
18
|
adantlr |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` R ) b ) e. B ) |
| 20 |
3
|
fvdiagfn |
|- ( ( I e. W /\ ( a ( .s ` R ) b ) e. B ) -> ( F ` ( a ( .s ` R ) b ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 21 |
16 19 20
|
syl2anc |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` R ) b ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 22 |
3
|
fvdiagfn |
|- ( ( I e. W /\ b e. B ) -> ( F ` b ) = ( I X. { b } ) ) |
| 23 |
22
|
ad2ant2l |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( F ` b ) = ( I X. { b } ) ) |
| 24 |
23
|
oveq2d |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) ( F ` b ) ) = ( a ( .s ` Y ) ( I X. { b } ) ) ) |
| 25 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 26 |
|
simpll |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> R e. LMod ) |
| 27 |
|
simprl |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> a e. ( Base ` ( Scalar ` R ) ) ) |
| 28 |
1 2 25
|
pwsdiagel |
|- ( ( ( R e. LMod /\ I e. W ) /\ b e. B ) -> ( I X. { b } ) e. ( Base ` Y ) ) |
| 29 |
28
|
adantrl |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( I X. { b } ) e. ( Base ` Y ) ) |
| 30 |
1 25 4 5 6 8 26 16 27 29
|
pwsvscafval |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) ( I X. { b } ) ) = ( ( I X. { a } ) oF ( .s ` R ) ( I X. { b } ) ) ) |
| 31 |
|
id |
|- ( I e. W -> I e. W ) |
| 32 |
|
vex |
|- a e. _V |
| 33 |
32
|
a1i |
|- ( I e. W -> a e. _V ) |
| 34 |
|
vex |
|- b e. _V |
| 35 |
34
|
a1i |
|- ( I e. W -> b e. _V ) |
| 36 |
31 33 35
|
ofc12 |
|- ( I e. W -> ( ( I X. { a } ) oF ( .s ` R ) ( I X. { b } ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 37 |
36
|
ad2antlr |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( ( I X. { a } ) oF ( .s ` R ) ( I X. { b } ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 38 |
24 30 37
|
3eqtrd |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) ( F ` b ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
| 39 |
21 38
|
eqtr4d |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` R ) b ) ) = ( a ( .s ` Y ) ( F ` b ) ) ) |
| 40 |
2 4 5 6 7 8 9 10 12 15 39
|
islmhmd |
|- ( ( R e. LMod /\ I e. W ) -> F e. ( R LMHom Y ) ) |