Step |
Hyp |
Ref |
Expression |
1 |
|
pwsdiaglmhm.y |
|- Y = ( R ^s I ) |
2 |
|
pwsdiaglmhm.b |
|- B = ( Base ` R ) |
3 |
|
pwsdiaglmhm.f |
|- F = ( x e. B |-> ( I X. { x } ) ) |
4 |
|
eqid |
|- ( .s ` R ) = ( .s ` R ) |
5 |
|
eqid |
|- ( .s ` Y ) = ( .s ` Y ) |
6 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
7 |
|
eqid |
|- ( Scalar ` Y ) = ( Scalar ` Y ) |
8 |
|
eqid |
|- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
9 |
|
simpl |
|- ( ( R e. LMod /\ I e. W ) -> R e. LMod ) |
10 |
1
|
pwslmod |
|- ( ( R e. LMod /\ I e. W ) -> Y e. LMod ) |
11 |
1 6
|
pwssca |
|- ( ( R e. LMod /\ I e. W ) -> ( Scalar ` R ) = ( Scalar ` Y ) ) |
12 |
11
|
eqcomd |
|- ( ( R e. LMod /\ I e. W ) -> ( Scalar ` Y ) = ( Scalar ` R ) ) |
13 |
|
lmodgrp |
|- ( R e. LMod -> R e. Grp ) |
14 |
1 2 3
|
pwsdiagghm |
|- ( ( R e. Grp /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
15 |
13 14
|
sylan |
|- ( ( R e. LMod /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
16 |
|
simplr |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> I e. W ) |
17 |
2 6 4 8
|
lmodvscl |
|- ( ( R e. LMod /\ a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) -> ( a ( .s ` R ) b ) e. B ) |
18 |
17
|
3expb |
|- ( ( R e. LMod /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` R ) b ) e. B ) |
19 |
18
|
adantlr |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` R ) b ) e. B ) |
20 |
3
|
fvdiagfn |
|- ( ( I e. W /\ ( a ( .s ` R ) b ) e. B ) -> ( F ` ( a ( .s ` R ) b ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
21 |
16 19 20
|
syl2anc |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` R ) b ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
22 |
3
|
fvdiagfn |
|- ( ( I e. W /\ b e. B ) -> ( F ` b ) = ( I X. { b } ) ) |
23 |
22
|
ad2ant2l |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( F ` b ) = ( I X. { b } ) ) |
24 |
23
|
oveq2d |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) ( F ` b ) ) = ( a ( .s ` Y ) ( I X. { b } ) ) ) |
25 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
26 |
|
simpll |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> R e. LMod ) |
27 |
|
simprl |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> a e. ( Base ` ( Scalar ` R ) ) ) |
28 |
1 2 25
|
pwsdiagel |
|- ( ( ( R e. LMod /\ I e. W ) /\ b e. B ) -> ( I X. { b } ) e. ( Base ` Y ) ) |
29 |
28
|
adantrl |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( I X. { b } ) e. ( Base ` Y ) ) |
30 |
1 25 4 5 6 8 26 16 27 29
|
pwsvscafval |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) ( I X. { b } ) ) = ( ( I X. { a } ) oF ( .s ` R ) ( I X. { b } ) ) ) |
31 |
|
id |
|- ( I e. W -> I e. W ) |
32 |
|
vex |
|- a e. _V |
33 |
32
|
a1i |
|- ( I e. W -> a e. _V ) |
34 |
|
vex |
|- b e. _V |
35 |
34
|
a1i |
|- ( I e. W -> b e. _V ) |
36 |
31 33 35
|
ofc12 |
|- ( I e. W -> ( ( I X. { a } ) oF ( .s ` R ) ( I X. { b } ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
37 |
36
|
ad2antlr |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( ( I X. { a } ) oF ( .s ` R ) ( I X. { b } ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
38 |
24 30 37
|
3eqtrd |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( a ( .s ` Y ) ( F ` b ) ) = ( I X. { ( a ( .s ` R ) b ) } ) ) |
39 |
21 38
|
eqtr4d |
|- ( ( ( R e. LMod /\ I e. W ) /\ ( a e. ( Base ` ( Scalar ` R ) ) /\ b e. B ) ) -> ( F ` ( a ( .s ` R ) b ) ) = ( a ( .s ` Y ) ( F ` b ) ) ) |
40 |
2 4 5 6 7 8 9 10 12 15 39
|
islmhmd |
|- ( ( R e. LMod /\ I e. W ) -> F e. ( R LMHom Y ) ) |