Step |
Hyp |
Ref |
Expression |
1 |
|
pwsdiagrhm.y |
|- Y = ( R ^s I ) |
2 |
|
pwsdiagrhm.b |
|- B = ( Base ` R ) |
3 |
|
pwsdiagrhm.f |
|- F = ( x e. B |-> ( I X. { x } ) ) |
4 |
|
simpl |
|- ( ( R e. Ring /\ I e. W ) -> R e. Ring ) |
5 |
1
|
pwsring |
|- ( ( R e. Ring /\ I e. W ) -> Y e. Ring ) |
6 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
7 |
1 2 3
|
pwsdiagghm |
|- ( ( R e. Grp /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
8 |
6 7
|
sylan |
|- ( ( R e. Ring /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
9 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
10 |
9
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
11 |
|
eqid |
|- ( ( mulGrp ` R ) ^s I ) = ( ( mulGrp ` R ) ^s I ) |
12 |
9 2
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
13 |
11 12 3
|
pwsdiagmhm |
|- ( ( ( mulGrp ` R ) e. Mnd /\ I e. W ) -> F e. ( ( mulGrp ` R ) MndHom ( ( mulGrp ` R ) ^s I ) ) ) |
14 |
10 13
|
sylan |
|- ( ( R e. Ring /\ I e. W ) -> F e. ( ( mulGrp ` R ) MndHom ( ( mulGrp ` R ) ^s I ) ) ) |
15 |
|
eqidd |
|- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) ) |
16 |
|
eqidd |
|- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) ) |
17 |
|
eqid |
|- ( mulGrp ` Y ) = ( mulGrp ` Y ) |
18 |
|
eqid |
|- ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) |
19 |
|
eqid |
|- ( Base ` ( ( mulGrp ` R ) ^s I ) ) = ( Base ` ( ( mulGrp ` R ) ^s I ) ) |
20 |
|
eqid |
|- ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( mulGrp ` Y ) ) |
21 |
|
eqid |
|- ( +g ` ( ( mulGrp ` R ) ^s I ) ) = ( +g ` ( ( mulGrp ` R ) ^s I ) ) |
22 |
1 9 11 17 18 19 20 21
|
pwsmgp |
|- ( ( R e. Ring /\ I e. W ) -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s I ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s I ) ) ) ) |
23 |
22
|
simpld |
|- ( ( R e. Ring /\ I e. W ) -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s I ) ) ) |
24 |
|
eqidd |
|- ( ( ( R e. Ring /\ I e. W ) /\ ( y e. ( Base ` ( mulGrp ` R ) ) /\ z e. ( Base ` ( mulGrp ` R ) ) ) ) -> ( y ( +g ` ( mulGrp ` R ) ) z ) = ( y ( +g ` ( mulGrp ` R ) ) z ) ) |
25 |
22
|
simprd |
|- ( ( R e. Ring /\ I e. W ) -> ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s I ) ) ) |
26 |
25
|
oveqdr |
|- ( ( ( R e. Ring /\ I e. W ) /\ ( y e. ( Base ` ( mulGrp ` Y ) ) /\ z e. ( Base ` ( mulGrp ` Y ) ) ) ) -> ( y ( +g ` ( mulGrp ` Y ) ) z ) = ( y ( +g ` ( ( mulGrp ` R ) ^s I ) ) z ) ) |
27 |
15 16 15 23 24 26
|
mhmpropd |
|- ( ( R e. Ring /\ I e. W ) -> ( ( mulGrp ` R ) MndHom ( mulGrp ` Y ) ) = ( ( mulGrp ` R ) MndHom ( ( mulGrp ` R ) ^s I ) ) ) |
28 |
14 27
|
eleqtrrd |
|- ( ( R e. Ring /\ I e. W ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` Y ) ) ) |
29 |
8 28
|
jca |
|- ( ( R e. Ring /\ I e. W ) -> ( F e. ( R GrpHom Y ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` Y ) ) ) ) |
30 |
9 17
|
isrhm |
|- ( F e. ( R RingHom Y ) <-> ( ( R e. Ring /\ Y e. Ring ) /\ ( F e. ( R GrpHom Y ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` Y ) ) ) ) ) |
31 |
4 5 29 30
|
syl21anbrc |
|- ( ( R e. Ring /\ I e. W ) -> F e. ( R RingHom Y ) ) |