Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015) (Revised by Mario Carneiro, 5-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsbas.y | |- Y = ( R ^s I ) |
|
| pwsbas.f | |- B = ( Base ` R ) |
||
| pwselbas.v | |- V = ( Base ` Y ) |
||
| pwselbas.r | |- ( ph -> R e. W ) |
||
| pwselbas.i | |- ( ph -> I e. Z ) |
||
| pwselbas.x | |- ( ph -> X e. V ) |
||
| Assertion | pwselbas | |- ( ph -> X : I --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsbas.y | |- Y = ( R ^s I ) |
|
| 2 | pwsbas.f | |- B = ( Base ` R ) |
|
| 3 | pwselbas.v | |- V = ( Base ` Y ) |
|
| 4 | pwselbas.r | |- ( ph -> R e. W ) |
|
| 5 | pwselbas.i | |- ( ph -> I e. Z ) |
|
| 6 | pwselbas.x | |- ( ph -> X e. V ) |
|
| 7 | 1 2 3 | pwselbasb | |- ( ( R e. W /\ I e. Z ) -> ( X e. V <-> X : I --> B ) ) |
| 8 | 4 5 7 | syl2anc | |- ( ph -> ( X e. V <-> X : I --> B ) ) |
| 9 | 6 8 | mpbid | |- ( ph -> X : I --> B ) |