Metamath Proof Explorer


Theorem pwselbas

Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015) (Revised by Mario Carneiro, 5-Jun-2015)

Ref Expression
Hypotheses pwsbas.y
|- Y = ( R ^s I )
pwsbas.f
|- B = ( Base ` R )
pwselbas.v
|- V = ( Base ` Y )
pwselbas.r
|- ( ph -> R e. W )
pwselbas.i
|- ( ph -> I e. Z )
pwselbas.x
|- ( ph -> X e. V )
Assertion pwselbas
|- ( ph -> X : I --> B )

Proof

Step Hyp Ref Expression
1 pwsbas.y
 |-  Y = ( R ^s I )
2 pwsbas.f
 |-  B = ( Base ` R )
3 pwselbas.v
 |-  V = ( Base ` Y )
4 pwselbas.r
 |-  ( ph -> R e. W )
5 pwselbas.i
 |-  ( ph -> I e. Z )
6 pwselbas.x
 |-  ( ph -> X e. V )
7 1 2 3 pwselbasb
 |-  ( ( R e. W /\ I e. Z ) -> ( X e. V <-> X : I --> B ) )
8 4 5 7 syl2anc
 |-  ( ph -> ( X e. V <-> X : I --> B ) )
9 6 8 mpbid
 |-  ( ph -> X : I --> B )