Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015) (Revised by Mario Carneiro, 5-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwsbas.y | |- Y = ( R ^s I ) |
|
pwsbas.f | |- B = ( Base ` R ) |
||
pwselbas.v | |- V = ( Base ` Y ) |
||
pwselbas.r | |- ( ph -> R e. W ) |
||
pwselbas.i | |- ( ph -> I e. Z ) |
||
pwselbas.x | |- ( ph -> X e. V ) |
||
Assertion | pwselbas | |- ( ph -> X : I --> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsbas.y | |- Y = ( R ^s I ) |
|
2 | pwsbas.f | |- B = ( Base ` R ) |
|
3 | pwselbas.v | |- V = ( Base ` Y ) |
|
4 | pwselbas.r | |- ( ph -> R e. W ) |
|
5 | pwselbas.i | |- ( ph -> I e. Z ) |
|
6 | pwselbas.x | |- ( ph -> X e. V ) |
|
7 | 1 2 3 | pwselbasb | |- ( ( R e. W /\ I e. Z ) -> ( X e. V <-> X : I --> B ) ) |
8 | 4 5 7 | syl2anc | |- ( ph -> ( X e. V <-> X : I --> B ) ) |
9 | 6 8 | mpbid | |- ( ph -> X : I --> B ) |