| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsbas.y |
|- Y = ( R ^s I ) |
| 2 |
|
pwsbas.f |
|- B = ( Base ` R ) |
| 3 |
|
pwselbas.v |
|- V = ( Base ` Y ) |
| 4 |
1 2
|
pwsbas |
|- ( ( R e. W /\ I e. Z ) -> ( B ^m I ) = ( Base ` Y ) ) |
| 5 |
4 3
|
eqtr4di |
|- ( ( R e. W /\ I e. Z ) -> ( B ^m I ) = V ) |
| 6 |
5
|
eleq2d |
|- ( ( R e. W /\ I e. Z ) -> ( X e. ( B ^m I ) <-> X e. V ) ) |
| 7 |
2
|
fvexi |
|- B e. _V |
| 8 |
|
elmapg |
|- ( ( B e. _V /\ I e. Z ) -> ( X e. ( B ^m I ) <-> X : I --> B ) ) |
| 9 |
7 8
|
mpan |
|- ( I e. Z -> ( X e. ( B ^m I ) <-> X : I --> B ) ) |
| 10 |
9
|
adantl |
|- ( ( R e. W /\ I e. Z ) -> ( X e. ( B ^m I ) <-> X : I --> B ) ) |
| 11 |
6 10
|
bitr3d |
|- ( ( R e. W /\ I e. Z ) -> ( X e. V <-> X : I --> B ) ) |