Step |
Hyp |
Ref |
Expression |
1 |
|
pwsgsum.y |
|- Y = ( R ^s I ) |
2 |
|
pwsgsum.b |
|- B = ( Base ` R ) |
3 |
|
pwsgsum.z |
|- .0. = ( 0g ` Y ) |
4 |
|
pwsgsum.i |
|- ( ph -> I e. V ) |
5 |
|
pwsgsum.j |
|- ( ph -> J e. W ) |
6 |
|
pwsgsum.r |
|- ( ph -> R e. CMnd ) |
7 |
|
pwsgsum.f |
|- ( ( ph /\ ( x e. I /\ y e. J ) ) -> U e. B ) |
8 |
|
pwsgsum.w |
|- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .0. ) |
9 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
10 |
1 9
|
pwsval |
|- ( ( R e. CMnd /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
11 |
6 4 10
|
syl2anc |
|- ( ph -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
12 |
11
|
oveq1d |
|- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) gsum ( y e. J |-> ( x e. I |-> U ) ) ) ) |
13 |
|
fconstmpt |
|- ( I X. { R } ) = ( x e. I |-> R ) |
14 |
13
|
oveq2i |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) |
15 |
|
eqid |
|- ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
16 |
|
fvexd |
|- ( ph -> ( Scalar ` R ) e. _V ) |
17 |
6
|
adantr |
|- ( ( ph /\ x e. I ) -> R e. CMnd ) |
18 |
11
|
fveq2d |
|- ( ph -> ( 0g ` Y ) = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
19 |
3 18
|
eqtrid |
|- ( ph -> .0. = ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
20 |
8 19
|
breqtrd |
|- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp ( 0g ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
21 |
14 2 15 4 5 16 17 7 20
|
prdsgsum |
|- ( ph -> ( ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( R gsum ( y e. J |-> U ) ) ) ) |
22 |
12 21
|
eqtrd |
|- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( R gsum ( y e. J |-> U ) ) ) ) |