| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsgrp.y |  |-  Y = ( R ^s I ) | 
						
							| 2 |  | pwsinvg.b |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | pwsinvg.m |  |-  M = ( invg ` R ) | 
						
							| 4 |  | pwsinvg.n |  |-  N = ( invg ` Y ) | 
						
							| 5 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) | 
						
							| 6 |  | simp2 |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> I e. V ) | 
						
							| 7 |  | fvexd |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( Scalar ` R ) e. _V ) | 
						
							| 8 |  | simp1 |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> R e. Grp ) | 
						
							| 9 |  | fconst6g |  |-  ( R e. Grp -> ( I X. { R } ) : I --> Grp ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( I X. { R } ) : I --> Grp ) | 
						
							| 11 |  | eqid |  |-  ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 12 |  | eqid |  |-  ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 13 |  | simp3 |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> X e. B ) | 
						
							| 14 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 15 | 1 14 | pwsval |  |-  ( ( R e. Grp /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 16 | 15 | 3adant3 |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) | 
						
							| 18 | 2 17 | eqtrid |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> B = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) | 
						
							| 19 | 13 18 | eleqtrd |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> X e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) | 
						
							| 20 | 5 6 7 10 11 12 19 | prdsinvgd |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ` X ) = ( x e. I |-> ( ( invg ` ( ( I X. { R } ) ` x ) ) ` ( X ` x ) ) ) ) | 
						
							| 21 |  | fvconst2g |  |-  ( ( R e. Grp /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) | 
						
							| 22 | 8 21 | sylan |  |-  ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( invg ` ( ( I X. { R } ) ` x ) ) = ( invg ` R ) ) | 
						
							| 24 | 23 3 | eqtr4di |  |-  ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( invg ` ( ( I X. { R } ) ` x ) ) = M ) | 
						
							| 25 | 24 | fveq1d |  |-  ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( ( invg ` ( ( I X. { R } ) ` x ) ) ` ( X ` x ) ) = ( M ` ( X ` x ) ) ) | 
						
							| 26 | 25 | mpteq2dva |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( x e. I |-> ( ( invg ` ( ( I X. { R } ) ` x ) ) ` ( X ` x ) ) ) = ( x e. I |-> ( M ` ( X ` x ) ) ) ) | 
						
							| 27 | 20 26 | eqtrd |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ` X ) = ( x e. I |-> ( M ` ( X ` x ) ) ) ) | 
						
							| 28 | 16 | fveq2d |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( invg ` Y ) = ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) | 
						
							| 29 | 4 28 | eqtrid |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> N = ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) | 
						
							| 30 | 29 | fveq1d |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( N ` X ) = ( ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ` X ) ) | 
						
							| 31 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 32 | 1 31 2 8 6 13 | pwselbas |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> X : I --> ( Base ` R ) ) | 
						
							| 33 | 32 | ffvelcdmda |  |-  ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( X ` x ) e. ( Base ` R ) ) | 
						
							| 34 | 32 | feqmptd |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> X = ( x e. I |-> ( X ` x ) ) ) | 
						
							| 35 | 31 3 | grpinvf |  |-  ( R e. Grp -> M : ( Base ` R ) --> ( Base ` R ) ) | 
						
							| 36 | 8 35 | syl |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> M : ( Base ` R ) --> ( Base ` R ) ) | 
						
							| 37 | 36 | feqmptd |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> M = ( y e. ( Base ` R ) |-> ( M ` y ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( y = ( X ` x ) -> ( M ` y ) = ( M ` ( X ` x ) ) ) | 
						
							| 39 | 33 34 37 38 | fmptco |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( M o. X ) = ( x e. I |-> ( M ` ( X ` x ) ) ) ) | 
						
							| 40 | 27 30 39 | 3eqtr4d |  |-  ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( N ` X ) = ( M o. X ) ) |