Step |
Hyp |
Ref |
Expression |
1 |
|
pwsgrp.y |
|- Y = ( R ^s I ) |
2 |
|
pwsinvg.b |
|- B = ( Base ` Y ) |
3 |
|
pwsinvg.m |
|- M = ( invg ` R ) |
4 |
|
pwsinvg.n |
|- N = ( invg ` Y ) |
5 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
6 |
|
simp2 |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> I e. V ) |
7 |
|
fvexd |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( Scalar ` R ) e. _V ) |
8 |
|
simp1 |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> R e. Grp ) |
9 |
|
fconst6g |
|- ( R e. Grp -> ( I X. { R } ) : I --> Grp ) |
10 |
8 9
|
syl |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( I X. { R } ) : I --> Grp ) |
11 |
|
eqid |
|- ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
12 |
|
eqid |
|- ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
13 |
|
simp3 |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> X e. B ) |
14 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
15 |
1 14
|
pwsval |
|- ( ( R e. Grp /\ I e. V ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
16 |
15
|
3adant3 |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
17 |
16
|
fveq2d |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
18 |
2 17
|
eqtrid |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> B = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
19 |
13 18
|
eleqtrd |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> X e. ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
20 |
5 6 7 10 11 12 19
|
prdsinvgd |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ` X ) = ( x e. I |-> ( ( invg ` ( ( I X. { R } ) ` x ) ) ` ( X ` x ) ) ) ) |
21 |
|
fvconst2g |
|- ( ( R e. Grp /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
22 |
8 21
|
sylan |
|- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
23 |
22
|
fveq2d |
|- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( invg ` ( ( I X. { R } ) ` x ) ) = ( invg ` R ) ) |
24 |
23 3
|
eqtr4di |
|- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( invg ` ( ( I X. { R } ) ` x ) ) = M ) |
25 |
24
|
fveq1d |
|- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( ( invg ` ( ( I X. { R } ) ` x ) ) ` ( X ` x ) ) = ( M ` ( X ` x ) ) ) |
26 |
25
|
mpteq2dva |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( x e. I |-> ( ( invg ` ( ( I X. { R } ) ` x ) ) ` ( X ` x ) ) ) = ( x e. I |-> ( M ` ( X ` x ) ) ) ) |
27 |
20 26
|
eqtrd |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ` X ) = ( x e. I |-> ( M ` ( X ` x ) ) ) ) |
28 |
16
|
fveq2d |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( invg ` Y ) = ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
29 |
4 28
|
eqtrid |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> N = ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
30 |
29
|
fveq1d |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( N ` X ) = ( ( invg ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ` X ) ) |
31 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
32 |
1 31 2 8 6 13
|
pwselbas |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> X : I --> ( Base ` R ) ) |
33 |
32
|
ffvelrnda |
|- ( ( ( R e. Grp /\ I e. V /\ X e. B ) /\ x e. I ) -> ( X ` x ) e. ( Base ` R ) ) |
34 |
32
|
feqmptd |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> X = ( x e. I |-> ( X ` x ) ) ) |
35 |
31 3
|
grpinvf |
|- ( R e. Grp -> M : ( Base ` R ) --> ( Base ` R ) ) |
36 |
8 35
|
syl |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> M : ( Base ` R ) --> ( Base ` R ) ) |
37 |
36
|
feqmptd |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> M = ( y e. ( Base ` R ) |-> ( M ` y ) ) ) |
38 |
|
fveq2 |
|- ( y = ( X ` x ) -> ( M ` y ) = ( M ` ( X ` x ) ) ) |
39 |
33 34 37 38
|
fmptco |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( M o. X ) = ( x e. I |-> ( M ` ( X ` x ) ) ) ) |
40 |
27 30 39
|
3eqtr4d |
|- ( ( R e. Grp /\ I e. V /\ X e. B ) -> ( N ` X ) = ( M o. X ) ) |