Metamath Proof Explorer


Theorem pwslnmlem0

Description: Zeroeth powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis pwslnmlem0.y
|- Y = ( W ^s (/) )
Assertion pwslnmlem0
|- ( W e. LMod -> Y e. LNoeM )

Proof

Step Hyp Ref Expression
1 pwslnmlem0.y
 |-  Y = ( W ^s (/) )
2 0ex
 |-  (/) e. _V
3 1 pwslmod
 |-  ( ( W e. LMod /\ (/) e. _V ) -> Y e. LMod )
4 2 3 mpan2
 |-  ( W e. LMod -> Y e. LMod )
5 eqid
 |-  ( Base ` W ) = ( Base ` W )
6 1 5 pwsbas
 |-  ( ( W e. LMod /\ (/) e. _V ) -> ( ( Base ` W ) ^m (/) ) = ( Base ` Y ) )
7 2 6 mpan2
 |-  ( W e. LMod -> ( ( Base ` W ) ^m (/) ) = ( Base ` Y ) )
8 fvex
 |-  ( Base ` W ) e. _V
9 map0e
 |-  ( ( Base ` W ) e. _V -> ( ( Base ` W ) ^m (/) ) = 1o )
10 8 9 ax-mp
 |-  ( ( Base ` W ) ^m (/) ) = 1o
11 df1o2
 |-  1o = { (/) }
12 10 11 eqtri
 |-  ( ( Base ` W ) ^m (/) ) = { (/) }
13 snfi
 |-  { (/) } e. Fin
14 12 13 eqeltri
 |-  ( ( Base ` W ) ^m (/) ) e. Fin
15 7 14 eqeltrrdi
 |-  ( W e. LMod -> ( Base ` Y ) e. Fin )
16 eqid
 |-  ( Base ` Y ) = ( Base ` Y )
17 16 filnm
 |-  ( ( Y e. LMod /\ ( Base ` Y ) e. Fin ) -> Y e. LNoeM )
18 4 15 17 syl2anc
 |-  ( W e. LMod -> Y e. LNoeM )