Step |
Hyp |
Ref |
Expression |
1 |
|
pwslnmlem0.y |
|- Y = ( W ^s (/) ) |
2 |
|
0ex |
|- (/) e. _V |
3 |
1
|
pwslmod |
|- ( ( W e. LMod /\ (/) e. _V ) -> Y e. LMod ) |
4 |
2 3
|
mpan2 |
|- ( W e. LMod -> Y e. LMod ) |
5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
6 |
1 5
|
pwsbas |
|- ( ( W e. LMod /\ (/) e. _V ) -> ( ( Base ` W ) ^m (/) ) = ( Base ` Y ) ) |
7 |
2 6
|
mpan2 |
|- ( W e. LMod -> ( ( Base ` W ) ^m (/) ) = ( Base ` Y ) ) |
8 |
|
fvex |
|- ( Base ` W ) e. _V |
9 |
|
map0e |
|- ( ( Base ` W ) e. _V -> ( ( Base ` W ) ^m (/) ) = 1o ) |
10 |
8 9
|
ax-mp |
|- ( ( Base ` W ) ^m (/) ) = 1o |
11 |
|
df1o2 |
|- 1o = { (/) } |
12 |
10 11
|
eqtri |
|- ( ( Base ` W ) ^m (/) ) = { (/) } |
13 |
|
snfi |
|- { (/) } e. Fin |
14 |
12 13
|
eqeltri |
|- ( ( Base ` W ) ^m (/) ) e. Fin |
15 |
7 14
|
eqeltrrdi |
|- ( W e. LMod -> ( Base ` Y ) e. Fin ) |
16 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
17 |
16
|
filnm |
|- ( ( Y e. LMod /\ ( Base ` Y ) e. Fin ) -> Y e. LNoeM ) |
18 |
4 15 17
|
syl2anc |
|- ( W e. LMod -> Y e. LNoeM ) |