Metamath Proof Explorer


Theorem pwslnmlem1

Description: First powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis pwslnmlem1.y
|- Y = ( W ^s { i } )
Assertion pwslnmlem1
|- ( W e. LNoeM -> Y e. LNoeM )

Proof

Step Hyp Ref Expression
1 pwslnmlem1.y
 |-  Y = ( W ^s { i } )
2 lnmlmod
 |-  ( W e. LNoeM -> W e. LMod )
3 snex
 |-  { i } e. _V
4 eqid
 |-  ( Base ` W ) = ( Base ` W )
5 eqid
 |-  ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( x e. ( Base ` W ) |-> ( { i } X. { x } ) )
6 1 4 5 pwsdiaglmhm
 |-  ( ( W e. LMod /\ { i } e. _V ) -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) e. ( W LMHom Y ) )
7 2 3 6 sylancl
 |-  ( W e. LNoeM -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) e. ( W LMHom Y ) )
8 id
 |-  ( W e. LNoeM -> W e. LNoeM )
9 eqid
 |-  ( Base ` Y ) = ( Base ` Y )
10 1 4 5 9 pwssnf1o
 |-  ( ( W e. LNoeM /\ i e. _V ) -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -1-1-onto-> ( Base ` Y ) )
11 10 elvd
 |-  ( W e. LNoeM -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -1-1-onto-> ( Base ` Y ) )
12 f1ofo
 |-  ( ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -1-1-onto-> ( Base ` Y ) -> ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -onto-> ( Base ` Y ) )
13 forn
 |-  ( ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) : ( Base ` W ) -onto-> ( Base ` Y ) -> ran ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( Base ` Y ) )
14 11 12 13 3syl
 |-  ( W e. LNoeM -> ran ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( Base ` Y ) )
15 9 lnmepi
 |-  ( ( ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) e. ( W LMHom Y ) /\ W e. LNoeM /\ ran ( x e. ( Base ` W ) |-> ( { i } X. { x } ) ) = ( Base ` Y ) ) -> Y e. LNoeM )
16 7 8 14 15 syl3anc
 |-  ( W e. LNoeM -> Y e. LNoeM )