Step |
Hyp |
Ref |
Expression |
1 |
|
pwsmgp.y |
|- Y = ( R ^s I ) |
2 |
|
pwsmgp.m |
|- M = ( mulGrp ` R ) |
3 |
|
pwsmgp.z |
|- Z = ( M ^s I ) |
4 |
|
pwsmgp.n |
|- N = ( mulGrp ` Y ) |
5 |
|
pwsmgp.b |
|- B = ( Base ` N ) |
6 |
|
pwsmgp.c |
|- C = ( Base ` Z ) |
7 |
|
pwsmgp.p |
|- .+ = ( +g ` N ) |
8 |
|
pwsmgp.q |
|- .+b = ( +g ` Z ) |
9 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
10 |
|
eqid |
|- ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
11 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) = ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) |
12 |
|
simpr |
|- ( ( R e. V /\ I e. W ) -> I e. W ) |
13 |
|
fvexd |
|- ( ( R e. V /\ I e. W ) -> ( Scalar ` R ) e. _V ) |
14 |
|
fnconstg |
|- ( R e. V -> ( I X. { R } ) Fn I ) |
15 |
14
|
adantr |
|- ( ( R e. V /\ I e. W ) -> ( I X. { R } ) Fn I ) |
16 |
9 10 11 12 13 15
|
prdsmgp |
|- ( ( R e. V /\ I e. W ) -> ( ( Base ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) /\ ( +g ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) = ( +g ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) ) |
17 |
16
|
simpld |
|- ( ( R e. V /\ I e. W ) -> ( Base ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) |
18 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
19 |
1 18
|
pwsval |
|- ( ( R e. V /\ I e. W ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
20 |
19
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( mulGrp ` Y ) = ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
21 |
4 20
|
eqtrid |
|- ( ( R e. V /\ I e. W ) -> N = ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
22 |
21
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( Base ` N ) = ( Base ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) ) |
23 |
2
|
fvexi |
|- M e. _V |
24 |
|
eqid |
|- ( M ^s I ) = ( M ^s I ) |
25 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
26 |
24 25
|
pwsval |
|- ( ( M e. _V /\ I e. W ) -> ( M ^s I ) = ( ( Scalar ` M ) Xs_ ( I X. { M } ) ) ) |
27 |
23 12 26
|
sylancr |
|- ( ( R e. V /\ I e. W ) -> ( M ^s I ) = ( ( Scalar ` M ) Xs_ ( I X. { M } ) ) ) |
28 |
2 18
|
mgpsca |
|- ( Scalar ` R ) = ( Scalar ` M ) |
29 |
28
|
eqcomi |
|- ( Scalar ` M ) = ( Scalar ` R ) |
30 |
29
|
a1i |
|- ( ( R e. V /\ I e. W ) -> ( Scalar ` M ) = ( Scalar ` R ) ) |
31 |
2
|
sneqi |
|- { M } = { ( mulGrp ` R ) } |
32 |
31
|
xpeq2i |
|- ( I X. { M } ) = ( I X. { ( mulGrp ` R ) } ) |
33 |
|
fnmgp |
|- mulGrp Fn _V |
34 |
|
elex |
|- ( R e. V -> R e. _V ) |
35 |
34
|
adantr |
|- ( ( R e. V /\ I e. W ) -> R e. _V ) |
36 |
|
fcoconst |
|- ( ( mulGrp Fn _V /\ R e. _V ) -> ( mulGrp o. ( I X. { R } ) ) = ( I X. { ( mulGrp ` R ) } ) ) |
37 |
33 35 36
|
sylancr |
|- ( ( R e. V /\ I e. W ) -> ( mulGrp o. ( I X. { R } ) ) = ( I X. { ( mulGrp ` R ) } ) ) |
38 |
32 37
|
eqtr4id |
|- ( ( R e. V /\ I e. W ) -> ( I X. { M } ) = ( mulGrp o. ( I X. { R } ) ) ) |
39 |
30 38
|
oveq12d |
|- ( ( R e. V /\ I e. W ) -> ( ( Scalar ` M ) Xs_ ( I X. { M } ) ) = ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) |
40 |
27 39
|
eqtrd |
|- ( ( R e. V /\ I e. W ) -> ( M ^s I ) = ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) |
41 |
3 40
|
eqtrid |
|- ( ( R e. V /\ I e. W ) -> Z = ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) |
42 |
41
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( Base ` Z ) = ( Base ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) |
43 |
17 22 42
|
3eqtr4d |
|- ( ( R e. V /\ I e. W ) -> ( Base ` N ) = ( Base ` Z ) ) |
44 |
43 5 6
|
3eqtr4g |
|- ( ( R e. V /\ I e. W ) -> B = C ) |
45 |
16
|
simprd |
|- ( ( R e. V /\ I e. W ) -> ( +g ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) = ( +g ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) |
46 |
21
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( +g ` N ) = ( +g ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) ) |
47 |
41
|
fveq2d |
|- ( ( R e. V /\ I e. W ) -> ( +g ` Z ) = ( +g ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) |
48 |
45 46 47
|
3eqtr4d |
|- ( ( R e. V /\ I e. W ) -> ( +g ` N ) = ( +g ` Z ) ) |
49 |
48 7 8
|
3eqtr4g |
|- ( ( R e. V /\ I e. W ) -> .+ = .+b ) |
50 |
44 49
|
jca |
|- ( ( R e. V /\ I e. W ) -> ( B = C /\ .+ = .+b ) ) |