| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsms.y |  |-  Y = ( R ^s I ) | 
						
							| 2 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 3 | 1 2 | pwsval |  |-  ( ( R e. MetSp /\ I e. Fin ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 4 |  | fvexd |  |-  ( ( R e. MetSp /\ I e. Fin ) -> ( Scalar ` R ) e. _V ) | 
						
							| 5 |  | simpr |  |-  ( ( R e. MetSp /\ I e. Fin ) -> I e. Fin ) | 
						
							| 6 |  | fconst6g |  |-  ( R e. MetSp -> ( I X. { R } ) : I --> MetSp ) | 
						
							| 7 | 6 | adantr |  |-  ( ( R e. MetSp /\ I e. Fin ) -> ( I X. { R } ) : I --> MetSp ) | 
						
							| 8 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) | 
						
							| 9 | 8 | prdsms |  |-  ( ( ( Scalar ` R ) e. _V /\ I e. Fin /\ ( I X. { R } ) : I --> MetSp ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. MetSp ) | 
						
							| 10 | 4 5 7 9 | syl3anc |  |-  ( ( R e. MetSp /\ I e. Fin ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. MetSp ) | 
						
							| 11 | 3 10 | eqeltrd |  |-  ( ( R e. MetSp /\ I e. Fin ) -> Y e. MetSp ) |