Step |
Hyp |
Ref |
Expression |
1 |
|
pwsms.y |
|- Y = ( R ^s I ) |
2 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
3 |
1 2
|
pwsval |
|- ( ( R e. MetSp /\ I e. Fin ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
4 |
|
fvexd |
|- ( ( R e. MetSp /\ I e. Fin ) -> ( Scalar ` R ) e. _V ) |
5 |
|
simpr |
|- ( ( R e. MetSp /\ I e. Fin ) -> I e. Fin ) |
6 |
|
fconst6g |
|- ( R e. MetSp -> ( I X. { R } ) : I --> MetSp ) |
7 |
6
|
adantr |
|- ( ( R e. MetSp /\ I e. Fin ) -> ( I X. { R } ) : I --> MetSp ) |
8 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
9 |
8
|
prdsms |
|- ( ( ( Scalar ` R ) e. _V /\ I e. Fin /\ ( I X. { R } ) : I --> MetSp ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. MetSp ) |
10 |
4 5 7 9
|
syl3anc |
|- ( ( R e. MetSp /\ I e. Fin ) -> ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) e. MetSp ) |
11 |
3 10
|
eqeltrd |
|- ( ( R e. MetSp /\ I e. Fin ) -> Y e. MetSp ) |